77 research outputs found

    The increasing importance of atmospheric demand for ecosystem water and carbon fluxes

    Get PDF
    Soil moisture supply and atmospheric demand for water independently limit—and profoundly affect—vegetation productivity and water use during periods of hydrologic stress1, 2, 3, 4. Disentangling the impact of these two drivers on ecosystem carbon and water cycling is difficult because they are often correlated, and experimental tools for manipulating atmospheric demand in the field are lacking. Consequently, the role of atmospheric demand is often not adequately factored into experiments or represented in models5, 6, 7. Here we show that atmospheric demand limits surface conductance and evapotranspiration to a greater extent than soil moisture in many biomes, including mesic forests that are of particular importance to the terrestrial carbon sink8, 9. Further, using projections from ten general circulation models, we show that climate change will increase the importance of atmospheric constraints to carbon and water fluxes in all ecosystems. Consequently, atmospheric demand will become increasingly important for vegetation function, accounting for >70% of growing season limitation to surface conductance in mesic temperate forests. Our results suggest that failure to consider the limiting role of atmospheric demand in experimental designs, simulation models and land management strategies will lead to incorrect projections of ecosystem responses to future climate conditions

    The home environment and childhood obesity in low-income households: indirect effects via sleep duration and screen time

    Get PDF
    Background Childhood obesity disproportionally affects children from low-income households. With the aim of informing interventions, this study examined pathways through which the physical and social home environment may promote childhood overweight/obesity in low-income households. Methods Data on health behaviors and the home environment were collected at home visits in low-income, urban households with either only normal weight (n = 48) or predominantly overweight/obese (n = 55) children aged 6–13 years. Research staff conducted comprehensive, in-person audits of the foods, media, and sports equipment in each household. Anthropometric measurements were collected, and children’s physical activity was assessed through accelerometry. Caregivers and children jointly reported on child sleep duration, screen time, and dietary intake of foods previously implicated in childhood obesity risk. Path analysis was used to test direct and indirect associations between the home environment and child weight status via the health behaviors assessed. Results Sleep duration was the only health behavior associated with child weight status (OR = 0.45, 95% CI: 0.27, 0.77), with normal weight children sleeping 33.3 minutes/day longer on average than overweight/obese children. The best-fitting path model explained 26% of variance in child weight status, and included paths linking chaos in the home environment, lower caregiver screen time monitoring, inconsistent implementation of bedtime routines, and the presence of a television in children’s bedrooms to childhood overweight/obesity through effects on screen time and sleep duration. Conclusions This study adds to the existing literature by identifying aspects of the home environment that influence childhood weight status via indirect effects on screen time and sleep duration in children from low-income households. Pediatric weight management interventions for low-income households may be improved by targeting aspects of the physical and social home environment associated with sleep

    Gene-Environment Interaction in the Etiology of Mathematical Ability Using SNP Sets

    Get PDF
    Mathematics ability and disability is as heritable as other cognitive abilities and disabilities, however its genetic etiology has received relatively little attention. In our recent genome-wide association study of mathematical ability in 10-year-old children, 10 SNP associations were nominated from scans of pooled DNA and validated in an individually genotyped sample. In this paper, we use a ‘SNP set’ composite of these 10 SNPs to investigate gene-environment (GE) interaction, examining whether the association between the 10-SNP set and mathematical ability differs as a function of ten environmental measures in the home and school in a sample of 1888 children with complete data. We found two significant GE interactions for environmental measures in the home and the school both in the direction of the diathesis-stress type of GE interaction: The 10-SNP set was more strongly associated with mathematical ability in chaotic homes and when parents are negative

    The establishment of a primary spine care practitioner and its benefits to health care reform in the United States

    Get PDF
    It is widely recognized that the dramatic increase in health care costs in the United States has not led to a corresponding improvement in the health care experience of patients or the clinical outcomes of medical care. In no area of medicine is this more true than in the area of spine related disorders (SRDs). Costs of medical care for SRDs have skyrocketed in recent years. Despite this, there is no evidence of improvement in the quality of this care. In fact, disability related to SRDs is on the rise. We argue that one of the key solutions to this is for the health care system to have a group of practitioners who are trained to function as primary care practitioners for the spine. We explain the reasons we think a primary spine care practitioner would be beneficial to patients, the health care system and society, some of the obstacles that will need to be overcome in establishing a primary spine care specialty and the ways in which these obstacles can be overcome.https://doi.org/10.1186/2045-709X-19-1

    Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    Get PDF
    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage
    corecore