11 research outputs found

    General theory for integer-type algorithm for higher order differential equations

    Full text link
    Based on functional analysis, we propose an algorithm for finite-norm solutions of higher-order linear Fuchsian-type ordinary differential equations (ODEs) P(x,d/dx)f(x)=0 with P(x,d/dx):=[\sum_m p_m (x) (d/dx)^m] by using only the four arithmetical operations on integers. This algorithm is based on a band-diagonal matrix representation of the differential operator P(x,d/dx), though it is quite different from the usual Galerkin methods. This representation is made for the respective CONSs of the input Hilbert space H and the output Hilbert space H' of P(x,d/dx). This band-diagonal matrix enables the construction of a recursive algorithm for solving the ODE. However, a solution of the simultaneous linear equations represented by this matrix does not necessarily correspond to the true solution of ODE. We show that when this solution is an l^2 sequence, it corresponds to the true solution of ODE. We invent a method based on an integer-type algorithm for extracting only l^2 components. Further, the concrete choice of Hilbert spaces H and H' is also given for our algorithm when p_m is a polynomial or a rational function with rational coefficients. We check how our algorithm works based on several numerical demonstrations related to special functions, where the results show that the accuracy of our method is extremely high.Comment: Errors concerning numbering of figures are fixe

    Application of abelian holonomy formalism to the elementary theory of numbers

    Full text link
    We consider an abelian holonomy operator in two-dimensional conformal field theory with zero-mode contributions. The analysis is made possible by use of a geometric-quantization scheme for abelian Chern-Simons theory on S1Ă—S1Ă—RS^1 \times S^1 \times {\bf R}. We find that a purely zero-mode part of the holonomy operator can be expressed in terms of Riemann's zeta function. We also show that a generalization of linking numbers can be obtained in terms of the vacuum expectation values of the zero-mode holonomy operators. Inspired by mathematical analogies between linking numbers and Legendre symbols, we then apply these results to a space of Fp=Z/pZ{\bf F}_p = {\bf Z}/ p {\bf Z} where pp is an odd prime number. This enables us to calculate "scattering amplitudes" of identical odd primes in the holonomy formalism. In this framework, the Riemann hypothesis can be interpreted by means of a physically obvious fact, i.e., there is no notion of "scattering" for a single-particle system. Abelian gauge theories described by the zero-mode holonomy operators will be useful for studies on quantum aspects of topology and number theory.Comment: 50 pages; v2,3. minor corrections; v4. minor revisions, published versio
    corecore