103 research outputs found

    Consequences Of Fully Dressing Quark-Gluon Vertex Function With Two-Point Gluon Lines

    Full text link
    We extend recent studies of the effects of quark-gluon vertex dressing upon the solutions of the Dyson-Schwinger equation for the quark propagator. A momentum delta function is used to represent the dominant infrared strength of the effective gluon propagator so that the resulting integral equations become algebraic. The quark-gluon vertex is constructed from the complete set of diagrams involving only 2-point gluon lines. The additional diagrams, including those with crossed gluon lines, are shown to make an important contribution to the DSE solutions for the quark propagator, because of their large color factors and the rapid growth in their number

    Effects of Quark Spin Flip on the Collins Fragmentation Function in a Toy Model

    Full text link
    The recent extension of the NJL-jet model to hadronization of transversely polarized quarks allowed the study of the Collins fragmentation function. Both favored and unfavored Collins fragmentation functions were generated, the latter purely by multiple hadron emissions, with 1/2 moments of opposite sign in the region of the light-cone momentum fraction zz accessible in current experiments. Hints of such behavior has been seen in the measurements in several experiments. Also, in the transverse momentum dependent (TMD) hadron emission probabilities, modulations of up to fourth order in sine of the polar angle were observed, while the Collins effect describes just the linear modulations. A crucial part of the extended model was the calculation of the quark spin flip probability after each hadron emission in the jet. Here we study the effects of this probability on the resulting unfavored and favored Collins functions by setting it as a constant and use a toy model for the elementary single hadron emission probabilities. The results of the Monte Carlo simulations showed that preferential quark spin flip in the elementary hadron emission is needed to generate the favored and unfavored Collins functions with opposite sign 1/2 moments. For the TMD hadron emission modulations, we showed that the model quark spin flip probabilities are a partial source of the higher rode modulations, while the other source is the Collins modulation of the remnant quark from the hadron emission recoil.Comment: 7 pages, 6 figures. To appear in proceedings of HITES 2012, Conference in Honor of Jerry P. Draayer, Horizons of Innovative Theories, Experiments, and Supercomputing in Nuclear Physics, New Orleans, Louisiana, June 4-7, 201

    Comparison of Nucleon Form Factors from Lattice QCD Against the Light Front Cloudy Bag Model and Extrapolation to the Physical Mass Regime

    Get PDF
    We explore the possibility of extrapolating state of the art lattice QCD calculations of nucleon form factors to the physical regime. We find that the lattice results can be reproduced using the Light Front Cloudy Bag Model by letting its parameters be analytic functions of the quark mass. We then use the model to extend the lattice calculations to large values of Q^{2} of interest to current and planned experiments. These functions are also used to define extrapolations to the physical value of the pion mass, thereby allowing us to study how the predicted zero in G_{E}(Q^{2})/G_{M}(Q^{2}) varies as a function of quark mass.Comment: 31 pages, 22 figure

    Paving the way : a future without inertia is closer than you think

    Get PDF
    Unless you have been hibernating in a remote cave for the past decade, you will have noticed the explosion of variable renewable generation. Wind power and solar photovoltaics (PVs) have been the subject of dozens of articles, just within the pages of IEEE Power & Energy Magazine. Charts illustrating relentless growth, such as the example from the United States shown in Figure 1 with futures tending toward 100% renewable energy, are common. This figure, provided by the National Renewable Energy Laboratory (NREL), reflects a low-cost, high-renewable projection scenario

    Self-scheduling of wind-thermal systems using a stochastic MILP approach

    Get PDF
    In this work a stochastic (Stoc) mixed-integer linear programming (MILP) approach for the coordinated trading of a price-taker thermal (Ther) and wind power (WP) producer taking part in a day-ahead market (DAM) electricity market (EMar) is presented. Uncertainty (Uncer) on electricity price (EPr) and WP is considered through established scenarios. Thermal units (TU) are modelled by variable costs, start-up (ST-UP) technical operating constraints and costs, such as: forbidden operating zones, minimum (Min) up/down time limits and ramp up/down limits. The goal is to obtain the optimal bidding strategy (OBS) and the maximization of profit (MPro). The wind-Ther coordinated configuration (CoConf) is modelled and compared with the unCoConf. The CoConf and unCoConf are compared and relevant conclusions are drawn from a case study

    Cold uniform matter and neutron stars in the quark-mesons-coupling model

    Get PDF
    A new density dependent effective baryon-baryon interaction has been recently derived from the quark-meson-coupling (QMC) model, offering impressive results in application to finite nuclei and dense baryon matter. This self-consistent, relativistic quark-level approach is used to construct the Equation of State (EoS) and to calculate key properties of high density matter and cold, slowly rotating neutron stars. The results include predictions for the maximum mass of neutron star models, together with the corresponding radius and central density, as well the properties of neutron stars with mass of order 1.4 MM_\odot. The cooling mechanism allowed by the QMC EoS is explored and the parameters relevant to slow rotation, namely the moment of inertia and the period of rotation investigated. The results of the calculation, which are found to be in good agreement with available observational data, are compared with the predictions of more traditional EoS. The QMC EoS provides cold neutron star models with maximum mass 1.9--2.1 M_\odot, with central density less than 6 times nuclear saturation density (n0=0.16fm3n_{0}= 0.16 {\rm fm}^{-3}) and offers a consistent description of the stellar mass up to this density limit. In contrast with other models, QMC predicts no hyperon contribution at densities lower than 3n03n_0, for matter in β\beta-equilibrium. At higher densities, Ξ,0\Xi^{-,0} and Λ\Lambda hyperons are present

    Mission and system architecture for an operational network of earth observation satellite nodes

    Get PDF
    Nowadays, constellations and distributed networks of satellites are emerging as clear development trends in the space system market to enable augmentation, enhancement, and possibilities of new applications for future Earth Observation (EO) missions. While the adoption of these satellite architectures is gaining momentum for the attaining of ever more stringent application requirements and stakeholder needs, the efforts to analyze their benefits and suitability, and to assess their impact for future programmes remains as an open challenge to the EO community. In this context, this paper presents the mission and system architecture conceived during the Horizon 2020 ONION project, a European Union research activity that proposes a systematic approach to the optimization of EO space infrastructures. In particular, ONION addressed the design of complementary assets that progressively supplement current programs and took part in the exploration of needs and implementation of architectures for the Copernicus Space Component for EO. Among several use cases considered, the ONION project focused on proposing system architectures to provide improved revisit time, data latency and image resolution for a demanding application scenario of interest: Marine Weather Forecast (MWF). A set of promising system architectures has been subject of a comprehensive assessment, based on mission analysis expertise and detailed simulation for evaluating several key parameters such as revisit time and data latency of each measurement of interest, on-board memory evolution and power budget of each satellite of the constellation, ground station contacts and inter-satellite links. The architectures are built with several heterogeneous satellite nodes distributed in different orbital planes. Each platform can embark different instrument sets, which provide the required measurements for each use case. A detailed mission analysis has then been performed to the selected architecture for the MWF use case, including a refined data flow analysis to optimize system resources; a refined power budget analysis; a delta-V and a fuel budget analysis considering all the possible phases of the mission. This includes from the correction of launcher injection errors and acquisition of nominal satellite position inside the constellation, orbit maintenance to control altitude, collision avoidance to avoid collision with space debris objects and end-of-life (EOL) disposal to comply with EOL guidelines. The relevance of the system architecture selected for the MWF has been evaluated for three use cases of interest (Arctic sea-ice monitoring, maritime fishery pressure and aquaculture, agricultural hydric stress) to show the versatility and the feasibility of the chosen architecture to be adapted for other EO applications.This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 687490

    Masses of ground and excited-state hadrons

    Get PDF
    We present the first Dyson-Schwinger equation calculation of the light hadron spectrum that simultaneously correlates the masses of meson and baryon ground- and excited-states within a single framework. At the core of our analysis is a symmetry-preserving treatment of a vector-vector contact interaction. In comparison with relevant quantities the root-mean-square-relative-error/degree-of freedom is 13%. Notable amongst our results is agreement between the computed baryon masses and the bare masses employed in modern dynamical coupled-channels models of pion-nucleon reactions. Our analysis provides insight into numerous aspects of baryon structure; e.g., relationships between the nucleon and Delta masses and those of the dressed-quark and diquark correlations they contain.Comment: 25 pages, 7 figures, 4 table

    Generalized Parton Distributions from Hadronic Observables: Non-Zero Skewness

    Full text link
    We propose a physically motivated parametrization for the unpolarized generalized parton distributions, H and E, valid at both zero and non-zero values of the skewness variable, \zeta. Our approach follows a previous detailed study of the \zeta=0 case where H and E were determined using constraints from simultaneous fits of the experimental data on both the nucleon elastic form factors and the deep inelastic structure functions in the non singlet sector. Additional constraints at \zeta \neq 0 are provided by lattice calculations of the higher moments of generalized parton distributions. We illustrate a method for extracting generalized parton distributions from lattice moments based on a reconstruction using sets of orthogonal polynomials. The inclusion in our fit of data on Deeply Virtual Compton Scattering is also discussed. Our method provides a step towards a model independent extraction of generalized distributions from the data. It also provides an alternative to double distributions based phenomenological models in that we are able to satisfy the polynomiality condition by construction, using a combination of experimental data and lattice, without resorting to any specific mathematical construct.Comment: 29 pages, 8 figures; added references, changed text in several place
    corecore