1,666 research outputs found

    Chiral Perturbation Theory with tensor sources

    Get PDF
    We construct the most general chirally-invariant Lagrangian for mesons in the presence of external sources coupled to the tensor current \bar{\psi}\sigma_{\mu\nu}\psi. In order to have only even terms in the chiral expansion, we consider the new source of O(p^2). With this choice, we build the even-parity effective Lagrangian up to the p^6-order (NLO). While there are only 4 new terms at the p^4-order, at p^6-order we find 78 terms for n_f=2 and 113 terms for n_f=3. We provide a detailed discussion on the different mechanisms that ensure that our final set of operators is complete and non-redundant. We also examine the odd-parity sector, to conclude that the first operators appear at the p^8-order (NNLO).Comment: 23 pages, one figure; typos corrected, one paragraph added, new section added, references added, published versio

    Filtenna Integration Achieving Ideal Chebyshev Return Losses

    Get PDF
    This paper demonstrates that it is possible to find an ideal filter response (Chebyshew, Butterworth,..) considering the antenna as the last resonator of a filter under certain circumstances related with the antenna performance and the bandwidth of the filtenna device. If these circumstances are not accomplished, we can achieve excellent performance as well, by means of an iterative process the goal of which is defined by either a filter mask or a classical filter function itself. The methodology is based on the conventional coupling matrix technique for filter design and has been validated by fabricating a microstrip prototype using hairpin resonators and a rectangular patch antenna

    Nonlinear Performance of BAW Filters Including BST Capacitors

    Get PDF
    This paper evaluates the nonlinear effects occurring in a bulk acoustic wave (BAW) filter which includes barium strontium titanate (BST) capacitors to cancel the electrostatic capacitance of the BAW resonators. To do that we consider the nonlinear effects on the BAW resonators by use of a nonlinear Mason model. This model accounts for the distributed nonlinearities inherent in the materials forming the resonator. The whole filter is then implemented by properly connecting the resonators in a balanced configuration. Additional BST capacitors are included in the filter topology. The nonlinear behavior of the BST capacitors is also accounted in the overall nonlinear assessment. The whole circuit is then used to evaluate its nonlinear behavior. It is found that the nonlinear contribution arising from the ferroelectric nature of the BST capacitors makes it impractical to fulfill the linearity requirements of commercial filters

    Fourteen candidate RR Lyrae star streams in the inner Galaxy

    Get PDF
    We apply the GC3 stream-finding method to RR Lyrae stars (RRLSs) in the Catalina survey. We find 2 RRLS stream candidates at >4σ confidence and another 12 at >3.5σ confidence over the Galactocentric distance range 4 < D/kpc < 26. Of these, only two are associated with known globular clusters (NGC 1261 and Arp2). The remainder are candidate ‘orphan’ streams, consistent with the idea that globular cluster streams are most visible close to dissolution. Our detections are likely a lower bound on the total number of dissolving globulars in the inner galaxy, since many globulars have few RRLSs, while only the brightest streams are visible over the Galactic RRLS background, particularly given the current lack of kinematical information. We make all of our candidate streams publicly available and provide a new galstreamsPYTHON library for the footprints of all known streams and overdensities in the Milky Way

    Intermodulation distortion in coupled-resonator filters with nonuniformly distributed nonlinear properties - Use in HTS IMD compensation.

    Get PDF
    We present a general procedure for calculating intermodulation distortion in coupled-resonator filters that allows one to predict the performance of a nonlinear filter as a function of the general nodal matrix defining the filter and the material parameters that cause the nonlinear behavior. It is valid for almost any type of nonlinear distributed effects, including those produced by high-temperature superconductors, nonlinear dielectrics such as ferroelectrics, or superconductor/ferroelectric bilayers, and it is valid when the spatial distribution of nonlinearities is not uniform. The procedure has been validated with experimental measurements in an eight-pole quasi-elliptic superconducting filter. Using this procedure, we have assessed a combination of materials with different types of nonlinear effects to partially or completely mitigate the filter's nonlinear response. This includes superconducting filters with a ferroelectric pre- or post-distorter stage or even with intermediate ferroelectric compensation stages.Peer Reviewe

    Detuning and saturation of superconducting devices: formulation and measurements

    Get PDF
    Saturation and detuning of high temperature superconducting (HTS) resonators and filters may occur due to the inherent nonlinear properties of the superconductor. In HTS transmission lines, these nonlinear properties introduce a dependence of the inductance and resistance per unit length on the current through the line and, if the line forms a resonator, this current dependence provokes changes in quality factor and/or resonant frequency with incident power. This paper derives equations for the dependence of the quality factor and resonant frequency of a nonlinear transmission line vs. source power and relates it to the circuit parameters of a nonlinear transmission line. The equations are verified with measurements in a 3.3 GHz YBa2Cu3O7-x (YBCO) coplanar waveguide (CPW) resonator at 76 K and with simulations using harmonic balancePeer Reviewe

    Searching for tidal tails around ω\omega Centauri using RR Lyrae Stars

    Full text link
    We present a survey for RR Lyrae stars in an area of 50 deg2^2 around the globular cluster ω\omega Centauri, aimed to detect debris material from the alleged progenitor galaxy of the cluster. We detected 48 RR Lyrae stars of which only 11 have been previously reported. Ten among the eleven previously known stars were found inside the tidal radius of the cluster. The rest were located outside the tidal radius up to distances of 6\sim 6 degrees from the center of the cluster. Several of those stars are located at distances similar to that of ω\omega Centauri. We investigated the probability that those stars may have been stripped off the cluster by studying their properties (mean periods), calculating the expected halo/thick disk population of RR Lyrae stars in this part of the sky, analyzing the radial velocity of a sub-sample of the RR Lyrae stars, and finally, studying the probable orbits of this sub-sample around the Galaxy. None of these investigations support the scenario that there is significant tidal debris around ω\omega Centauri, confirming previous studies in the region. It is puzzling that tidal debris have been found elsewhere but not near the cluster itself.Comment: 11 pages, 11 figures, Accepte

    Viral Genome Segmentation Can Result from a Trade-Off between Genetic Content and Particle Stability

    Get PDF
    The evolutionary benefit of viral genome segmentation is a classical, yet unsolved question in evolutionary biology and RNA genetics. Theoretical studies anticipated that replication of shorter RNA segments could provide a replicative advantage over standard size genomes. However, this question has remained elusive to experimentalists because of the lack of a proper viral model system. Here we present a study with a stable segmented bipartite RNA virus and its ancestor non-segmented counterpart, in an identical genomic nucleotide sequence context. Results of RNA replication, protein expression, competition experiments, and inactivation of infectious particles point to a non-replicative trait, the particle stability, as the main driver of fitness gain of segmented genomes. Accordingly, measurements of the volume occupation of the genome inside viral capsids indicate that packaging shorter genomes involves a relaxation of the packaging density that is energetically favourable. The empirical observations are used to design a computational model that predicts the existence of a critical multiplicity of infection for domination of segmented over standard types. Our experiments suggest that viral segmented genomes may have arisen as a molecular solution for the trade-off between genome length and particle stability. Genome segmentation allows maximizing the genetic content without the detrimental effect in stability derived from incresing genome length
    corecore