229 research outputs found

    Age-related impairment of mesenchymal progenitor cell function

    Get PDF
    In most mesenchymal tissues a subcompartment of multipotent progenitor cells is responsible for the maintenance and repair of the tissue following trauma. With increasing age, the ability of tissues to repair themselves is diminished, which may be due to reduced functional capacity of the progenitor cells. The purpose of this study was to investigate the effect of aging on rat mesenchymal progenitor cells. Mesenchymal progenitor cells were isolated from Wistar rats aged 3, 7, 12 and 56 weeks. Viability, capacity for differentiation and cellular aging were examined. Cells from the oldest group accumulated raised levels of oxidized proteins and lipids and showed decreased levels of antioxidative enzyme activity. This was reflected in decreased fibroblast colony-forming unit (CFU-f) numbers, increased levels of apoptosis and reduced proliferation and potential for differentiation. These data suggest that the reduced ability to maintain mesenchymal tissue homeostasis in aged mammals is not purely due to a decline in progenitor cells numbers but also to a loss of progenitor functionality due to the accumulation of oxidative damage, which may in turn be a causative factor in a number of age-related pathologies such as arthritis, tendinosis and osteoporosis. © 2006 The Authors Journal compilation © Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland 2006

    Influence of antioxidant (L- ascorbic acid) on tolbutamide induced hypoglycaemia/antihyperglycaemia in normal and diabetic rats

    Get PDF
    BACKGROUND: Diabetes mellitus is a chronic metabolic disorder characterized by hyperglycaemia. Increased oxidative stress and decreased antioxidant levels are the leading cause of diabetes and diabetic complications. So it is felt that supplementation of antioxidants may be useful in controlling the glucose levels and to postpone the occurrence of diabetic complications. The objective of our study is to find the influence of antioxidant supplementation (L-ascorbic acid) on tolbutamide activity in normal and diabetic rats. METHODS: L- ascorbic acid/tolbutamide/L-ascorbic acid + tolbutamide were administered orally to 3 different groups of albino rats of either sex in normal and diabetic condition. Blood samples were collected from retro-orbital puncture at different time intervals and were analyzed for blood glucose by GOD-POD method. Diabetes was induced by alloxan 100 mg/kg body weight administered by I.P route. RESULTS: L-ascorbic acid/ tolbutamide produced hypoglycaemic activity in a dose dependant manner in normal and diabetic condition. In the presence of L-ascorbic acid, tolbuatmide produced early onset of action and maintained for longer period compared to tolbutamide matching control. CONCLUSION: Supplementation of antioxidants like L-ascorbic acid was found to improve tolbutamide response in normal and diabetic rats

    Metabolic syndrome and risk factors for cardiovascular disease: are nonagenarians protected?

    Get PDF
    This study assessed cardiovascular disease risk factors in three groups of human subjects aged 20–34 [young, 20 male (M)/33 female (F)], 60–74 (aged, 29M/29F), and > 90 years (nonagenarian, 47M/50F). Components of the metabolic syndrome, cardiovascular disease, and markers of inflammation and oxidative stress were assessed. Nonagenarians weighed less than the two other groups (P < 0.001); however, there was no difference in percent fat among the three groups. Aged individuals had the highest prevalence of the metabolic syndrome (P < 0.001) according to the Adult Treatment Panel III classification. Both fibrinogen and homocysteine concentrations were significantly higher in the nonagenarians compared to younger groups. However, there were no significant differences between groups in fasting insulin, high sensitive C-reactive protein, and plasminogen activator inhibitor 1 concentrations. There were also no relationships between inflammation/ oxidative stress and the metabolic syndrome or cardiovascular disease although nonagenarians appear to be protected from oxidative damage to DNA

    Cell Survival from Chemotherapy Depends on NF-κB Transcriptional Up-Regulation of Coenzyme Q Biosynthesis

    Get PDF
    9 pages and 6 figures.[Background] Coenzyme Q (CoQ) is a lipophilic antioxidant that is synthesized by a mitochondrial complex integrated by at least ten nuclear encoded COQ gene products. CoQ increases cell survival under different stress conditions, including mitochondrial DNA (mtDNA) depletion and treatment with cancer drugs such as camptothecin (CPT). We have previously demonstrated that CPT induces CoQ biosynthesis in mammal cells.[Methodology/Principal Findings] CPT activates NF-κB that binds specifically to two κB binding sites present in the 5′-flanking region of the COQ7 gene. This binding is functional and induces both the COQ7 expression and CoQ biosynthesis. The inhibition of NF-κB activation increases cell death and decreases both, CoQ levels and COQ7 expression induced by CPT. In addition, using a cell line expressing very low of NF-κB, we demonstrate that CPT was incapable of enhancing enhance both CoQ biosynthesis and COQ7 expression in these cells.[Conclusions/Significance] We demonstrate here, for the first time, that a transcriptional mechanism mediated by NF-κB regulates CoQ biosynthesis. This finding contributes new data for the understanding of the regulation of the CoQ biosynthesis pathway.This work was supported by spanish Ministerio de Educacion y Ciencia Grant BFU2005-03017.Peer reviewe

    Interactions between genes involved in the antioxidant defence system and breast cancer risk

    Get PDF
    The aim of the study is to examine the association between multilocus genotypes across 10 genes encoding proteins in the antioxidant defence system and breast cancer. The 10 genes are SOD1, SOD2, GPX1, GPX4, GSR, CAT, TXN, TXN2, TXNRD1 and TXNRD2. In all, 2271 cases and 2280 controls were used to examine gene–gene interactions between 52 single nucleotide polymorphisms (SNPs) that are hypothesised to tag all common variants in the 10 genes. The statistical analysis is based on three methods: unconditional logistic regression, multifactor dimensionality reduction and hierarchical cluster analysis. We examined all two- and three-way combinations with unconditional logistic regression and multifactor dimensionality reduction, and used a global approach with all SNPs in the hierarchical cluster analysis. Single-locus studies of an association of genetic variants in the antioxidant defence genes and breast cancer have been contradictory and inconclusive. It is the first time, to our knowledge, the association between multilocus genotypes across genes coding for antioxidant defence enzymes and breast cancer is investigated. We found no evidence of an association with breast cancer with our multilocus approach. The search for two-way interactions gave experiment-wise significance levels of P=0.24 (TXN [t2715c] and TXNRD2 [g23524a]) and P=0.58 (GSR [c39396t] and TXNRD2 [a442g]), for the unconditional logistic regression and multifactor dimensionality reduction, respectively. The experiment-wise significance levels for the three-way interactions were P=0.94 (GPX4 [t2572c], TXN [t2715c] and TXNRD2 [g23524a]) and P=0.29 (GSR [c39396t], TXN [t2715c] and TXNRD2 [a442g]) for the unconditional logistic regression and multifactor dimensionality reduction, respectively. In the hierarchical cluster analysis neither the average across four rounds with replacement of missing values at random (P=0.12) nor a fifth round with more balanced proportion of missing values between cases and controls (P=0.17) was significant

    Protection from Intracellular Oxidative Stress by Cytoglobin in Normal and Cancerous Oesophageal Cells

    Get PDF
    Cytoglobin is an intracellular globin of unknown function that is expressed mostly in cells of a myofibroblast lineage. Possible functions of cytoglobin include buffering of intracellular oxygen and detoxification of reactive oxygen species. Previous work in our laboratory has demonstrated that cytoglobin affords protection from oxidant-induced DNA damage when over expressed in vitro, but the importance of this in more physiologically relevant models of disease is unknown. Cytoglobin is a candidate for the tylosis with oesophageal cancer gene, and its expression is strongly down-regulated in non-cancerous oesophageal biopsies from patients with TOC compared with normal biopsies. Therefore, oesophageal cells provide an ideal experimental model to test our hypothesis that downregulation of cytoglobin expression sensitises cells to the damaging effects of reactive oxygen species, particularly oxidative DNA damage, and that this could potentially contribute to the TOC phenotype. In the current study, we tested this hypothesis by manipulating cytoglobin expression in both normal and oesophageal cancer cell lines, which have normal physiological and no expression of cytoglobin respectively. Our results show that, in agreement with previous findings, over expression of cytoglobin in cancer cell lines afforded protection from chemically-induced oxidative stress but this was only observed at non-physiological concentrations of cytoglobin. In addition, down regulation of cytoglobin in normal oesophageal cells had no effect on their sensitivity to oxidative stress as assessed by a number of end points. We therefore conclude that normal physiological concentrations of cytoglobin do not offer cytoprotection from reactive oxygen species, at least in the current experimental model

    Evaluation of behavioural and antioxidant activity of Cytisus scoparius Link in rats exposed to chronic unpredictable mild stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Various human diseases have oxidative stress as one of their component. Many herbs have been reported to exhibit properties that combat oxidative stress through their active constituents such as flavonoids, tannins, phenolic compounds etc. <it>Cytisus scoparius </it>(CS) Link, (Family: Leguminosae), also called <it>Sarothamnus scoparius</it>, has been shown in <it>invitro </it>experiments to be endowed with anti-diabetic, hypnotic and sedative and antioxidant activity. Therefore this study was carried out to evaluate CS for its anxiolytic, antidepressant and anti-oxidant activity in stressed rats.</p> <p>Methods</p> <p>60% methanolic extract of CS was quantified for phenolic content by Folin-Ciocalteau's method. Chronic unpredictable mild stress (CMS) was employed to induce stress in rats. CS (125 and 250 mg/kg, p.o) and diazepam (DZM) (2 mg/kg, p.o) was administered during the 21 day stress exposure period. Anxiolytic and antidepressant activities of CS were assessed in open field exploratory and behavioural despair paradigms, respectively. Plasma glucose and total lipids; endogenous antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT); non-enzymic-ascorbic acid and thiobarbituric acid reactive substances (TBARS) levels were measured in brain, kidneys and adrenals using standard protocols to assess the effect of CS.</p> <p>Results</p> <p>Total phenolic content of CS was found to be 8.54 ± 0.16% w/w. CMS produced anxiogenic and depressive behaviour in experimental rats with metabolic disturbance. Significant decrease in SOD, CAT levels and increase in lipid peroxidation level was observed in stressed rats. CS administration for 21 days during stress exposure significantly increased the ambulatory behaviour and decreased the freezing time in open field behaviour. In behavioural despair test no significant alteration in the immobility period was observed. CS also improved SOD, CAT, and ascorbic acid level and controlled the lipid peroxidation in different tissues.</p> <p>Conclusion</p> <p>CS possesses anti-stress and moderate anxiolytic activity which may be due, in part, to its antioxidant effect that might warrant further studies.</p

    Inferring the conservative causal core of gene regulatory networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inferring gene regulatory networks from large-scale expression data is an important problem that received much attention in recent years. These networks have the potential to gain insights into causal molecular interactions of biological processes. Hence, from a methodological point of view, reliable estimation methods based on observational data are needed to approach this problem practically.</p> <p>Results</p> <p>In this paper, we introduce a novel gene regulatory network inference (GRNI) algorithm, called C3NET. We compare C3NET with four well known methods, ARACNE, CLR, MRNET and RN, conducting in-depth numerical ensemble simulations and demonstrate also for biological expression data from <it>E. coli </it>that C3NET performs consistently better than the best known GRNI methods in the literature. In addition, it has also a low computational complexity. Since C3NET is based on estimates of mutual information values in conjunction with a maximization step, our numerical investigations demonstrate that our inference algorithm exploits causal structural information in the data efficiently.</p> <p>Conclusions</p> <p>For systems biology to succeed in the long run, it is of crucial importance to establish methods that extract large-scale gene networks from high-throughput data that reflect the underlying causal interactions among genes or gene products. Our method can contribute to this endeavor by demonstrating that an inference algorithm with a neat design permits not only a more intuitive and possibly biological interpretation of its working mechanism but can also result in superior results.</p
    corecore