35 research outputs found

    Reconciling strontium-isotope and K-Ar ages with biostratigraphy: the case of the Urgonian platform, Early Cretaceous of the Jura Mountains, Western Switzerland

    Get PDF
    During the late Early Cretaceous, the shallow-water domains of the western Tethys are characterized by the widespread deposition of Urgonian-type carbonates rich in rudists, corals and other oligotrophic, shallow-marine organisms. In the Helvetic Alps, the Urgonian occurrences have been dated by ammonite biostratigraphy as Late Barremian and Early Aptian. For the more proximal occurrences in the western Swiss Jura, a recent age model based on bio-, chemo- and sequence stratigraphy has been proposed, which allows for an improved correlation with the Helvetic counterparts. In order to corroborate the recently proposed age model for the Jura, a set of well-preserved rhynchonellids collected from five different lithostratigraphical formations and members ("Marnes bleues d'Hauterive”, "Marnes d'Uttins”, basal marly layers within the "Urgonien Jaune”, "Marnes de la Russille”, "Urgonien Blanc”) has been analysed for its strontium-isotope ratios (87Sr/86Sr). In addition, K-Ar dating was performed on well-preserved glauconite grains from two different levels ("Marnes d'Uttins” and a basal layer within the "Urgonien Jaune”). The correlation of the Sr-isotope data set with a belemnite-based, ammonite-calibrated reference curve provides an age model which is coherent with recently published ages based on calcareous nannofossil biostratigraphy and the correlation of trends in chemo- and sequence stratigraphy. K-Ar dating on well-preserved glauconite grains from the "Marnes d'Uttins” and lowermost part of the "Urgonien Jaune” delivered ages of 127.5±2.3 and 130.7±2.6Ma, respectively. Whereas the age of the glauconitic level near the base of the "Urgonien Jaune” is chronostratigraphically meaningful, the K-Ar age of the "Marnes d'Uttins” appears too young relative to the presently used time scale. This may be related to rejuvenation of the K-Ar chronometer due to post-depositional Ar loss, most likely during hardground formation. The ages obtained here confirm the Late Barremian age for the onset of the Urgonian platform, an age which is conform with ages obtained in the Helvetic Alps and elsewhere along the northern Tethyan margi

    High cadmium concentrations in Jurassic limestone as the cause for elevated cadmium levels in deriving soils: a case study in Lower Burgundy, France

    Get PDF
    Cadmium (Cd) is a highly toxic element and its presence in the environment needs to be closely monitored. Recent systematic surveys in French soils have revealed the existence of areas in eastern and central France, which show systematically high cadmium concentrations. It has been suggested that at least part of these anomalous levels are of natural origin. For the Lower Burgundy area in particular, a direct heritage from the Jurassic limestone bedrock is highly suspected. This potential relationship has been studied in several localities around Avallon and this study reports new evidence for a direct link between anomalously elevated cadmium contents of Bajocian and Oxfordian limestone and high cadmium concentrations in deriving soils. Soils in this area show cadmium concentrations generally above the average national population values, with contents frequently higher than the ‘upper whisker' value of 0.8ÎŒgg−1 determined by statistical evaluation. In parallel, limestone rocks studied in the same area exhibit cadmium concentrations frequently exceeding the mean value of 0.030-0.065ÎŒgg−1 previously given for similar rocks by one order of magnitude, with a maximum of 2.6ÎŒgg−1. Mean ratios between the cadmium concentrations of limestone bedrock and deriving soils (Cdsoil/Cdrock), calculated for different areas, range from 4.6 to 5.7. Calculations based on the analyses of both soils from a restricted area and fragments of bedrock sampled in the immediate vicinity of high-concentration soils are around 5.5-5.7. Cdsoil/Cdrock is useful in determining the potential of soils in Lower Burgundy to reflect and exacerbate the high concentrations of cadmium present in parent bedrock

    Enrichment of redox-sensitive trace metals (U, V, Mo, As) associated with the late Hauterivian Faraoni oceanic anoxic event

    Get PDF
    The Faraoni Level is a short-lived oxygen-deficient event that took place during the latest Hauterivian. In order to improve our understanding of the palaeoenvironmental conditions that occurred during this event, we have analysed the contents of several redox-sensitive trace elements (U, V, Mo, As, Co, Cd, Cu, Zn, Ni, Pb, Cr) from bulk limestone samples of late Hauterivian-early Barremian age from three reference sections. U, V, Mo and As show consistent and significant enrichments during the Faraoni event whereas the other redox-sensitive trace elements analysed here are not systematically enriched. In order to explain this discrepant behaviour, we propose that the Faraoni Level was deposited during a period of anoxic conditions near the sediment-water interface. The distinctive peaks in U, V, Mo and As contents are traceable throughout the three studied sections and represent a good correlation tool which helps to identify the Faraoni Level and its equivalents in the western Tethyan realm and outside of the Tethys. For example, a peak in U contents in upper Hauterivian sediments of the northwestern Pacific realm (ODP leg 185, site 1149) may well be an expression of the Faraoni event in this particular basi

    Cadmium accumulation in six common plant species associated with soils containing high geogenic cadmium concentrations at Le Gurnigel, Swiss Jura Mountains

    No full text
    International audienceThe uptake of cadmium (Cd) was analyzed for six different perennial plant species growing in a wooded pasture of the Swiss Jura Mountains, where the soils are geogenically enriched in Cd (4.58 mg·kg− 1 on average (n = 36); maximal value: 16.3 mg·kg−1). The six selected plants — Hypericum maculatum (Hypericaceae), Alchemilla xanthochlora (Rosaceae), Cynosurus cristatus (Poaceae), Ranunculus acris (Ranunculaceae), Dactylis glomerata (Poaceae) and Acer pseudoplatanus (Sapindaceae) — show variable Cd contents among the species and among individuals from the same family (Poaceae). Average Cd concentrations in the selected plants are in the 2–6 mg·kg− 1 range and exceed the maximal Cd concentration tolerated in vegetal feed for animals, which is established at 1 mg·kg− 1. High Cd concentrations in the soil result in a reduction of Cd accumulation in the shoots and a corresponding increase in the roots. This implies that Cd transfer coefficients from the soil/rhizosphere to the plant are inversely proportional to the total Cd concentrations in soils and do not depend on plant species but instead on soil type. Sequential chemical extractions reveal that variations in Cd distribution between the bulk soil and the corresponding rhizospheric soil occur mainly in the Cd-bearing phases, which are exchangeable, bound to carbonates, and associated with organic matter. This is principally due to the incorporation of root exudates, which modify pH and redox conditions of the rhizosphere. Elevated Cd concentrations in the shoots of A. xanthochlora (up to 8 mg·kg− 1), C. cristatus (9 mg·kg− 1) and H. maculatum (3 mg·kg− 1) may represent a long-term hazard for livestock and human health since these plants are used either by grazing cattle or for medicinal purposes. On the contrary, R. acris, A. pseudoplatanus, and especially D. glomerata show lower Cd concentrations and are of minor concern with regards to their environmental impact

    Enrichment of redox-sensitive trace metals (U, V, Mo, As) associated with the late Hauterivian Faraoni oceanic anoxic event

    Get PDF
    The Faraoni Level is a short-lived oxygen-deficient event that took place during the latest Hauterivian. In order to improve our understanding of the palaeoenvironmental conditions that occurred during this event, we have analysed the contents of several redox-sensitive trace elements (U, V, Mo, As, Co, Cd, Cu, Zn, Ni, Pb, Cr) from bulk limestone samples of late Hauterivian–early Barremian age from three reference sections. U, V, Mo and As show consistent and significant enrichments during the Faraoni event whereas the other redox-sensitive trace elements analysed here are not systematically enriched. In order to explain this discrepant behaviour, we propose that the Faraoni Level was deposited during a period of anoxic conditions near the sediment–water interface. The distinctive peaks in U, V, Mo and As contents are traceable throughout the three studied sections and represent a good correlation tool which helps to identify the Faraoni Level and its equivalents in the western Tethyan realm and outside of the Tethys. For example, a peak in U contents in upper Hauterivian sediments of the northwestern Pacific realm (ODP leg 185, site 1149) may well be an expression of the Faraoni event in this particular basin
    corecore