8,813 research outputs found

    Zygmunt Bauman’s Ethical Warnings in the Area of Economics. The Third Millennium’s Perspective

    Get PDF
    Zygmunt Bauman is not only a sociologist and philosopher reputable in the world of science, he is also a father figure for people interested in the phenomenon of globalization. Bauman investigates how current economic and political changes influence the lives of particular societies. It was important to underline that also economists can make use of Bauman’s ideas but with a few reservations That is why the following crucial areas were proposed relating to economic aspects: the meaning of consumptionism and wastage; global inequalities; the reasons and consequences of the global economic crisis, and some heterodox matters such as happiness, welfare, and well-being, all of which can be helpful in understanding the multidimensional globalization process

    On the value set of small families of polynomials over a finite field, II

    Get PDF
    We obtain an estimate on the average cardinality of the value set of any family of monic polynomials of Fq[T] of degree d for which s consecutive coefficients a_{d-1},...,a_{d-s} are fixed. Our estimate asserts that \mathcal{V}(d,s,\bfs{a})=\mu_d\,q+\mathcal{O}(q^{1/2}), where \mathcal{V}(d,s,\bfs{a}) is such an average cardinality, \mu_d:=\sum_{r=1}^d{(-1)^{r-1}}/{r!} and \bfs{a}:=(a_{d-1},...,a_{d-s}). We also prove that \mathcal{V}_2(d,s,\bfs{a})=\mu_d^2\,q^2+\mathcal{O}(q^{3/2}), where that \mathcal{V}_2(d,s,\bfs{a}) is the average second moment on any family of monic polynomials of Fq[T] of degree d with s consecutive coefficients fixed as above. Finally, we show that \mathcal{V}_2(d,0)=\mu_d^2\,q^2+\mathcal{O}(q), where \mathcal{V}_2(d,0) denotes the average second moment of all monic polynomials in Fq[T] of degree d with f(0)=0. All our estimates hold for fields of characteristic p>2 and provide explicit upper bounds for the constants underlying the \mathcal{O}--notation in terms of d and s with "good" behavior. Our approach reduces the questions to estimate the number of Fq--rational points with pairwise--distinct coordinates of a certain family of complete intersections defined over Fq. A critical point for our results is an analysis of the singular locus of the varieties under consideration, which allows to obtain rather precise estimates on the corresponding number of Fq--rational points.Comment: 36 page

    Dimerized ground states in spin-S frustrated systems

    Get PDF
    We study a family of frustrated anti-ferromagnetic spin-SS systems with a fully dimerized ground state. This state can be exactly obtained without the need to include any additional three-body interaction in the model. The simplest members of the family can be used as a building block to generate more complex geometries like spin tubes with a fully dimerized ground state. After present some numerical results about the phase diagram of these systems, we show that the ground state is robust against the inclusion of weak disorder in the couplings as well as several kinds of perturbations, allowing to study some other interesting models as a perturbative expansion of the exact one. A discussion on how to determine the dimerization region in terms of quantum information estimators is also presented. Finally, we explore the relation of these results with a the case of the a 4-leg spin tube which recently was proposed as the model for the description of the compound Cu2_2Cl4_4D8_8C4_4SO2_2, delimiting the region of the parameter space where this model presents dimerization in its ground state.Comment: 10 pages, 9 figure

    On the computation of rational points of a hypersurface over a finite field

    Full text link
    We design and analyze an algorithm for computing rational points of hypersurfaces defined over a finite field based on searches on "vertical strips", namely searches on parallel lines in a given direction. Our results show that, on average, less than two searches suffice to obtain a rational point. We also analyze the probability distribution of outputs, using the notion of Shannon entropy, and prove that the algorithm is somewhat close to any "ideal" equidistributed algorithm.Comment: 31 pages, 5 table
    corecore