135 research outputs found

    Density Functional Theory of doped superfluid liquid helium and nanodroplets

    Full text link
    During the last decade, density function theory (DFT) in its static and dynamic time dependent forms, has emerged as a powerful tool to describe the structure and dynamics of doped liquid helium and droplets. In this review, we summarize the activity carried out in this field within the DFT framework since the publication of the previous review article on this subject [M. Barranco et al., J. Low Temp. Phys. 142, 1 (2006)]. Furthermore, a comprehensive presentation of the actual implementations of helium DFT is given, which have not been discussed in the individual articles or are scattered in the existing literature. This is an Accepted Manuscript of an article published on August 2, 2017 by Taylor & Francis Group in Int. Rev. Phys. Chem. 36, 621 (2017), available online: http://dx.doi.org/10.1080/0144235X.2017.1351672Comment: 113 pages, 42 figure

    Seeing the invisible: convection cells revealed with thermal imaging

    Full text link
    Fluid instabilities are ubiquitous phenomena of great theoretical and applied importance. In particular, an intriguing example is the thermocapillary or B\'enard-Marangoni instability which occurs when a thin horizontal fluid layer, whose top surface is free, is heated from below. In this phenomenon, after passing a certain temperature difference threshold, the fluid develops a regular pattern, usually hexagonal, of convection cells known as B\'enard convection. In general this pattern is not visible to the naked eye unless specific tracers are incorporated into the fluid. The use of thermal imaging is a simple alternative not only for directly observing these phenomenon but also for obtaining valuable quantitative information, such as the relationship between the critical wavelength and the depth of the fluid layer. Here, we propose an experiment specially suited for laboratory courses in fluid mechanics or nonlinear physics that involves the use of thermal cameras. or smartphone accessories, to study B\'enard convection.Comment: 8 pages, 6 fig

    Boletín de espiritualidad sacerdotal (2000-2010)

    Get PDF
    La bibliografía sobre el sacerdocio ministerial y la espiritualidad sacerdotal en el período comprendido entre 2000-2010 aporta un buen número de trabajos especializados. En ellos observamos que una vez cerrada lo que muy bien puede llamarse crisis teológica en torno al sacerdocio, las nuevas propuestas de vida y espiritualidad vuelven a fundamentarse sobre la realidad de la unión entre consagración y misión. La nueva consagración recibida con la ordenación sacramental hace posible la misión sacerdotal de servicio a Dios, a la Iglesia y a todas las personas. Es precisamente en el ejercicio del ministerio sacerdotal, como servicio de la Palabra, de la Liturgia -especialmente la Eucaristía- y de la caridad pastoral, donde el sacerdote está llamado a la santidad. La vida y enseñanza de sacerdotes santos, como san josemaría Escrivá, sirven de guía para la promoción efectiva de esta espiritualidad

    Pyrite-induced uv-photocatalytic abiotic nitrogen fixation : implications for early atmospheres and Life

    Get PDF
    Acknowledgements This work has been supported by the MINECO project ESP2017- 89053. Te Instituto Nacional de Técnica Aeroespacial supported the work performed at CAB. Tomas and Celina Huttel Serrano are acknowledged for providing the pyrite samples. This Project has been partially funded by the Spanish State Research Agency (AEI) Project No. MDM-2017-0737 Unidad de Excelencia “María de Maeztu”- Centro de Astrobiología (INTA-CSIC).Peer reviewedPublisher PD

    Defects on a pyrite(100) surface produce chemical evolution of glycine under inert conditions : experimental and theoretical approaches

    Get PDF
    Acknowledgements This work has been supported by the MINECO project ESP2017-89053. The Instituto Nacional de Tecnica Aeroespacial supported the work performed at CAB. EER is thankful to Javier Martin-Torres, Alfonso Hernandez-Laguna and C. M. Pradier for their support and suggestions. This Project has been partially funded by the Spanish State Research Agency (AEI) Project No. MDM-2017-0737 Unidad de Excelencia ‘‘Marıa de Maeztu’’-Centro de Astrobiologıa (CSIC-INTA).Peer reviewedPublisher PD

    Bernoulli’s muddle: a research on students’ misconceptions in fluid dynamics

    Get PDF
    [EN] Bernoulli’s equation, which relates the pressure of an ideal fluid in motion with its velocity and height under certain conditions, is a central topic in General Physics courses for Science and Engineering students. This equation, frequently used both textbooks as in science outreach activities or museums, is often extrapolated to explain situations in which it is no longer valid. A common example is to assume that, in any situation, higher speed means lower pressure, a conclusion that is only acceptable under certain conditions. In this paper we report the results of an investigation with university students on some misconceptions present in fluid dynamics. We found that after completing the General Physics courses, many students have not developed a correct model about the interaction of a fluid element with its environment and extrapolate the idea that higher speed implies lower pressure in situations where it is no longer valid. We also show that an approach to fluid dynamics based on Newton’s laws is more natural to address these misconceptions.[ES] La ecuación de Bernoulli, que bajo ciertas condiciones relaciona la presión de un fluido ideal en movimiento con su velocidad y su altura, es un tema central en los cursos de Física General para estudiantes de Ciencias e Ingeniería. Frecuentemente, en los libros de texto utilizados en cursos universitarios, al igual que en diversos medios de divulgación, se suele extrapolar este principio para explicar situaciones en las que no es válido. Un ejemplo habitual es suponer que, en cualquier situación, mayor velocidad implica menor presión, conclusión correcta solo en algunas circunstancias. En este trabajo, reportamos los resultados de una investigación con estudiantes universitarios, sobre las concepciones alternativas presentes en dinámica de fluidos. Encontramos que muchos estudiantes, incluso después de haber transitado por los cursos de Física General, no han elaborado un modelo adecuado acerca de la interacción de un elemento de un fluido con su entorno y extrapolan la idea que mayor velocidad implica una menor presión en contextos donde no es válida. Mostramos también que un enfoque de la dinámica de fluidos basado en las leyes de Newton resulta más natural para confrontar estas concepciones alternativas.Suárez, Á.; Dutra, M.; Monteiro, M.; Marti, AC. (2021). El embrollo de Bernoulli: una investigación sobre las concepciones alternativas de los estudiantes en dinámica de fluidos. Modelling in Science Education and Learning. 14(2):17-30. https://doi.org/10.4995/msel.2021.14835OJS1730142Allen Tipler, P., & Mosca, G. (2005). Fı́sica para la ciencia y la tecnología. Reverté: España, 2, 1113.Babinsky, H. (2003). How do wings work? Physics Education, 38 (6), 497. https://doi.org/10.1088/0031-9120/38/6/001Barbosa, L. H. (2013). Construcción, validación y calibración de un instrumento de medida del aprendizaje: test de ley de Bernoulli. Revista Educación en Ingeniería, 8 (15), 24-37.Barbosa, L. H., & Mora, C. (2013). Montajes de exd para incorporar la ley de presión hidrodinámica de Bernoulli en ambientes escolares de ingeniería. Latin-American Journal of Physics Education, 7 (3).Bauman, R. P., & Schwaneberg, R. (1994). Interpretation of Bernoulli's equation. The Physics Teacher , 32 (8), 478-488. Retrieved from https://doi.org/10.1119/1.2344087Benarroch, A. B. (2001). Una interpretación del desarrollo cognoscitivo de los alumnos en el área de la naturaleza corpuscular de la materia. Enseñanza de las ciencias: revista de investigación y experiencias didácticas, 123-134. https://doi.org/10.5565/rev/ensciencias.4018Besson, U. (2004). Students' conceptions of fluids. International Journal of Science Education, 26 (14), 1683-1714. Retrieved from https://doi.org/10.1080/0950069042000243745Brusca, S. (1986). Buttressing bernoulli. Physics Education, 21 (1), 14. Retrieved from https://doi.org/10.1088/0031-9120/21/1/307Carrascosa Alı́s, J., et al. (2005). El problema de las concepciones alternativas en la actualidad (parte i). análisissobre las causas que la originan y/o mantienen. Retrieved from https://doi.org/10498/16288Carey, S. (1999). Conceptual development: Piaget's legacy. Lawrence Erlbaum Assoc.Carrascosa Alís, J., et al. (2005). El problema de las concepciones alternativas en la actualidad (parte i). Análisis sobre las causas que la originan y/o mantienen. https://doi.org/10498/16288Cross, R., & Lindsey, C. (2017). Measurements of drag and lift on smooth balls in flight. European Journal of Physics, 38 (4), 044002. Retrieved from https://doi.org/10.1088/1361-6404/aa6e44Dutra, M., Suárez, Á., Monteiro, M., & Marti, A. C. (2020). When the quarter jumps into a cup (and when it does not). arXiv preprint arXiv:2010.13755 . Retrieved from http://arxiv.org/abs/2010.13755Eastwell, P. (2007). Bernoulli? perhaps, but what about viscosity?. Science Education Review , 6 (1), 1-13.Ehrlich, R. (1990). Turning the world inside out and 174 other simple physics demonstrations. Princeton University Press.Gipson, L. (2017). Principles of flight, Bernoulli's principle. Retrieved from https://www.nasa.gov/sites/default/files/atoms/files/bernoullisprinciple 5-8-02-09-17-508.pdfGoszewski, M., Moyer, A., Bazan, Z., & Wagner, D. (2013). Exploring student difficulties with pressure in a fluid. In Aip conference proceedings (Vol. 1513, pp. 154-157). Retrieved from https://doi.org/10.1063/1.4789675Guisasola, J., Azcona, R., Etxaniz, M., Mujika, E., & Morentin, M. (2005). Diseño de estrategias centradas en el aprendizaje para las visitas escolares a los museos de ciencias. Revista Eureka sobre enseñanza y divulgación de las Ciencias, 19-32.Jewett, J., & Serway, R. (2008). Fı́sica. para ciencias e ingenierías. Thomson.Kamela, M. (2007). Thinking about Bernoulli. The Physics Teacher , 45 (6), 379-381. Retrieved from https://doi.org/10.1119/1.2768700Koumaras, P., & Primerakis, G. (2018). Flawed applications of Bernoulli's principle. The Physics Teacher , 56 (4), 235-238. Retrieved from https://doi.org/10.1119/1.5028240Martin, D. H. (1983). Misunderstanding Bernoulli. The Physics Teacher , 21 (1), 37-37. Retrieved from https://doi.org/10.1119/1.2341184Pedrós Esteban, R., & Ferrer Roca, C. (2013). Demo 64. pelota de pingpong en un flujo de aire (Bernoulli ii). Demo 64Pozo, J. I. (1991). Procesos cognitivos en la comprensión de la ciencia (Vol. 65). Ministerio de Educacion.Resnick, R., Halliday, D., & Krane, K. S. (2002). Physics, volume 1 (Vol. 1). John Wiley & Sons Incorporated.Schäfle, C., & Kautz, C. (2019). Students reasoning in fluid dynamics: bBernoulli's principle vs. the continuity equation.Sears, F. W., Zemansky, M. W., Young, H. D., & Freedman, R. A. (2013). Física universitaria. volumen i. Décimo. México: Pearson Education.Smith, N. F. (1972). Bernoulli and newton in fluid mechanics. The Physics Teacher , 10 (8), 451-455. Retrieved from https://doi.org/10.1119/1.2352317Suarez, A., Kahan, S., Zavala, G., & Marti, A. C. (2017). Students' conceptual difficulties in hydrodynamics. Physical Review Physics Education Research, 13 (2), 020132. Retrieved from https://doi.org/10.1103/PhysRevPhysEducRes.13.020132Tenreiro-Vieira, C., & Vieira, R. M. (2006). Diseño y validación de actividades de laboratorio para promover el pensamiento crítico de los alumnos. Revista Eureka sobre enseñanza y divulgación de las ciencias, 452-466. Retrieved from https://doi.org/10498/16156Tipler, P. A., & Mosca, G. (2004). Física para la ciencia y la tecnología. ii (Vol. 2). Reverté.Vega-Calderón, F., Gallegos-Cázares, L., & Flores-Camacho, F. (2017). Dificultades conceptuales para la comprensión de la ecuación de Bernoulli. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 14 (2), 339-352. Retrieved from https://doi.org/10498/19221Weltner, K., & Ingelman-Sundberg, M. (2011). Misinterpretations of Bernoulli's law. Department of Physics, University Frankfurt

    Double balloon catheter for induction of labour in women with a previous cesarean section, could it be the best choice?

    Get PDF
    Introduction: We analysed the efficacy and safety of double-balloon catheter for cervical ripening in women with a previous cesarean section and which were the most important variables associated with an increased risk of repeated cesarean delivery. Materials and methods: We designed an observational retrospective study of 418 women with unfavourable cervices (Bishop Score <5), a prior cesarean delivery, and induction of labour with a double-balloon catheter. Baseline maternal data and perinatal outcomes were recorded for a descriptive, bivariate, and multivariate analysis. A p value <0.05 was considered statistically significant. Results: Most women improved their initial Bishop Score (89.5%) although only a 20.8% of them went into spontaneous active labour. Finally, 51.4% of the women achieved a vaginal delivery. Five cases of intrapartum uterine rupture (1.2%) occurred. After multivariate analysis, main risk factors for repeated cesarean section were dystocia in the previous pregnancy (OR 1.744; CI 95% 1.066–2.846), the absence of previous vaginal delivery (OR 2.590; CI 95% 1.066–6.290), suspected fetal macrosomia (OR 2.410; CI 95% 0.959–6.054), and duration of oxytocin induction period (OR 1.005; CI 95% 1.004–1.006). The area under the curve was 0.789 (p < 0.001). Conclusions: Double-balloon catheter seems to be safe and effective for cervical ripening in women with a previous cesarean delivery and unfavourable cervix. In our study, most women could have a vaginal delivery in spite of their risk factors for cesarean delivery. A multivariate model based on some clinical variables has moderate predictive value for intrapartum cesarean section
    corecore