32 research outputs found

    Mg II ABSORPTION AT 2 < z < 6 WITH MAGELLAN/FIRE. II. A LONGITUDINAL STUDY OF HI, METALS, AND IONIZATION IN GALACTIC HALOS

    Get PDF
    We present a detailed study of H I and metals for 110 Mg II absorption systems discovered at 1.98 12 Gyr). We observe a significant strengthening in the characteristic N(H I) for fixed Mg II equivalent width as one moves toward higher redshift. Indeed, at our sample's mean [bar over z] = 3.402, all Mg II systems are either damped Lyα absorbers (DLAs) or sub-DLAs, with 40.7% of systems exceeding the DLA threshold (compared to 16.7% at [bar over z] = 0.927). We set lower limits on the metallicity of the Mg II systems where we can measure H I; these results are consistent with the full DLA population. The classical Mg II systems (W[λ2796 over 0] = 0.3-1.0 A), which preferentially associate with sub-DLAs, are quite metal rich at ~0.1 solar. We applied quantitative classification metrics to our absorbers to compare with low-redshift populations, finding that weak systems are similar to classic Mg II absorbers at low redshift. The strong systems either have very large Mg II and Fe II velocity spreads implying non-virialized dynamics or are more quiescent DLAs. There is tentative evidence that the kinetically complex systems evolve in similar fashion to the global star formation rate. We speculate that if weaker Mg II systems represent accreting gas as suggested by recent studies of galaxy-absorber inclinations, then their high metal abundance suggests re-accretion of recently ejected material rather than first-time infall from the metal-poor intergalactic medium, even at early times.National Science Foundation (U.S.) (Grant AST-0908920)National Science Foundation (U.S.) (Grant AST-1109115)Massachusetts Institute of Technology. Undergraduate Research Opportunities Progra

    The Murchison Widefield Array: Design Overview

    Get PDF
    The Murchison Widefield Array (MWA) is a dipole-based aperture array synthesis telescope designed to operate in the 80-300 MHz frequency range. It is capable of a wide range of science investigations, but is initially focused on three key science projects. These are detection and characterization of 3-dimensional brightness temperature fluctuations in the 21cm line of neutral hydrogen during the Epoch of Reionization (EoR) at redshifts from 6 to 10, solar imaging and remote sensing of the inner heliosphere via propagation effects on signals from distant background sources,and high-sensitivity exploration of the variable radio sky. The array design features 8192 dual-polarization broad-band active dipoles, arranged into 512 tiles comprising 16 dipoles each. The tiles are quasi-randomly distributed over an aperture 1.5km in diameter, with a small number of outliers extending to 3km. All tile-tile baselines are correlated in custom FPGA-based hardware, yielding a Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point spread function (PSF) quality. The correlated data are calibrated in real time using novel position-dependent self-calibration algorithms. The array is located in the Murchison region of outback Western Australia. This region is characterized by extremely low population density and a superbly radio-quiet environment,allowing full exploitation of the instrumental capabilities.Comment: 9 pages, 5 figures, 1 table. Accepted for publication in Proceedings of the IEE

    Interferometric imaging with the 32 element Murchison Wide-field Array

    Get PDF
    The Murchison Wide-field Array (MWA) is a low frequency radio telescope, currently under construction, intended to search for the spectral signature of the epoch of re-ionisation (EOR) and to probe the structure of the solar corona. Sited in Western Australia, the full MWA will comprise 8192 dipoles grouped into 512 tiles, and be capable of imaging the sky south of 40 degree declination, from 80 MHz to 300 MHz with an instantaneous field of view that is tens of degrees wide and a resolution of a few arcminutes. A 32-station prototype of the MWA has been recently commissioned and a set of observations taken that exercise the whole acquisition and processing pipeline. We present Stokes I, Q, and U images from two ~4 hour integrations of a field 20 degrees wide centered on Pictoris A. These images demonstrate the capacity and stability of a real-time calibration and imaging technique employing the weighted addition of warped snapshots to counter extreme wide field imaging distortions.Comment: Accepted for publication in PASP. This is the draft before journal typesetting corrections and proofs so does contain formatting and journal style errors, also has with lower quality figures for space requirement

    The Murchison Widefield Array

    Get PDF
    It is shown that the excellent Murchison Radio-astronomy Observatory site allows the Murchison Widefield Array to employ a simple RFI blanking scheme and still calibrate visibilities and form images in the FM radio band. The techniques described are running autonomously in our calibration and imaging software, which is currently being used to process an FM-band survey of the entire southern sky.Comment: Accepted for publication in Proceedings of Science [PoS(RFI2010)016]. 6 pages and 3 figures. Presented at RFI2010, the Third Workshop on RFI Mitigation in Radio Astronomy, 29-31 March 2010, Groningen, The Netherland

    Observational Diagnostics of Gas Flows: Insights from Cosmological Simulations

    Full text link
    Galactic accretion interacts in complex ways with gaseous halos, including galactic winds. As a result, observational diagnostics typically probe a range of intertwined physical phenomena. Because of this complexity, cosmological hydrodynamic simulations have played a key role in developing observational diagnostics of galactic accretion. In this chapter, we review the status of different observational diagnostics of circumgalactic gas flows, in both absorption (galaxy pair and down-the-barrel observations in neutral hydrogen and metals; kinematic and azimuthal angle diagnostics; the cosmological column density distribution; and metallicity) and emission (Lya; UV metal lines; and diffuse X-rays). We conclude that there is no simple and robust way to identify galactic accretion in individual measurements. Rather, progress in testing galactic accretion models is likely to come from systematic, statistical comparisons of simulation predictions with observations. We discuss specific areas where progress is likely to be particularly fruitful over the next few years.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dave, to be published by Springer. Typos correcte

    Extremely metal-poor gas at a redshift of 7

    Get PDF
    In typical astrophysical environments, the abundance of heavy elements ranges from 0.001 to 2 times the solar value. Lower abundances have been seen in selected stars in the Milky Way’s halo and in two quasar absorption systems at redshift z = 3 (ref. 4). These are widely interpreted as relics from the early Universe, when all gas possessed a primordial chemistry. Before now there have been no direct abundance measurements from the first billion years after the Big Bang, when the earliest stars began synthesizing elements. Here we report observations of hydrogen and heavy-element absorption in a spectrum of a quasar at z =  7.04, when the Universe was just 772 million years old (5.6 per cent of its present age). We detect a large column of neutral hydrogen but no corresponding metals (defined as elements heavier than helium), limiting the chemical abundance to less than 1/10,000 times the solar level if the gas is in a gravitationally bound proto-galaxy, or to less than 1/1,000 times the solar value if it is diffuse and unbound. If the absorption is truly intergalactic, it would imply that the Universe was neither ionized by starlight nor chemically enriched in this neighbourhood at z ≈ 7. If it is gravitationally bound, the inferred abundance is too low to promote efficient cooling, and the system would be a viable site to form the predicted but as yet unobserved massive population III stars

    Bone mineral density in partially recovered early onset anorexic patients - a follow-up investigation

    Get PDF
    <p>Abstract</p> <p>Background and aims</p> <p>There still is a lack of prospective studies on bone mineral development in patients with a history of early onset Anorexia nervosa (AN). Therefore we assessed associations between bone mass accrual and clinical outcomes in a former clinical sample. In addition to an expected influence of regular physical activity and hormone replacement therapy, we explored correlations with nutritionally dependent hormones.</p> <p>Methods</p> <p>3-9 years (mean 5.2 ± 1.7) after hospital discharge, we re-investigated 52 female subjects with a history of early onset AN. By means of a standardized approach, we evaluated the general outcome of AN. Moreover, bone mineral content (BMC) and bone mineral density (BMD) as well as lean and fat mass were measured by dual-energy x-ray absorptiometry (DXA). In a substudy, we measured the serum concentrations of leptin and insulin-like growth factor-I (IGF-I).</p> <p>Results</p> <p>The general outcome of anorexia nervosa was good in 50% of the subjects (BMI ≥ 17.5 kg/m<sup>2</sup>, resumption of menses). Clinical improvement was correlated with BMC and BMD accrual (χ<sup>2 </sup>= 5.62/χ<sup>2 </sup>= 6.65, p = 0.06 / p = 0.036). The duration of amenorrhea had a negative correlation with BMD (r = -.362; p < 0.01), but not with BMC. Regular physical activity tended to show a positive effect on bone recovery, but the effect of hormone replacement therapy was not significant. Using age-related standards, the post-discharge sample for the substudy presented IGF-I levels below the 5<sup>th </sup>percentile. IGF-I serum concentrations corresponded to the general outcome of AN. By contrast, leptin serum concentrations showed great variability. They correlated with BMC and current body composition parameters.</p> <p>Conclusions</p> <p>Our results from the main study indicate a certain adaptability of bone mineral accrual which is dependent on a speedy and ongoing recovery. While leptin levels in the substudy tended to respond immediately to current nutritional status, IGF-I serum concentrations corresponded to the individual's age and general outcome of AN.</p

    Eating disorders: the current status of molecular genetic research

    Get PDF
    Anorexia nervosa (AN) and bulimia nervosa (BN) are complex disorders characterized by disordered eating behavior where the patient’s attitude towards weight and shape, as well as their perception of body shape, are disturbed. Formal genetic studies on twins and families suggested a substantial genetic influence for AN and BN. Candidate gene studies have initially focused on the serotonergic and other central neurotransmitter systems and on genes involved in body weight regulation. Hardly any of the positive findings achieved in these studies were unequivocally confirmed or substantiated in meta-analyses. This might be due to too small sample sizes and thus low power and/or the genes underlying eating disorders have not yet been analyzed. However, some studies that also used subphenotypes (e.g., restricting type of AN) led to more specific results; however, confirmation is as yet mostly lacking. Systematic genome-wide linkage scans based on families with at least two individuals with an eating disorder (AN or BN) revealed initial linkage regions on chromosomes 1, 3 and 4 (AN) and 10p (BN). Analyses on candidate genes in the chromosome 1 linkage region led to the (as yet unconfirmed) identification of certain variants associated with AN. Genome-wide association studies are under way and will presumably help to identify genes and pathways involved in these eating disorders. The elucidation of the molecular mechanisms underlying eating disorders might improve therapeutic approaches

    Leptin signaling and circuits in puberty and fertility

    Full text link
    corecore