132 research outputs found

    Selenium uptake and Se compounds in Se-treated buckwheat

    Get PDF
    In field experiments, tartary buckwheat and hybrid buckwheat were foliarly sprayed with an aqueous solution of sodium selenate (20 mg Se L–1). In treated plants, the selenium content was significantly higher than in controls, irrespective of the plant part and taxon of buckwheat. The highest average Se concentrations in hybrid and tartary buckwheat were found in seeds. The main Se species found in seeds was Se methionine. Selenium-sprayed plants had higher photochemical efficiency of photosystem II in both taxa and higher electron transport system activity in hybrid buckwheat, suggesting a positive effect of Se on physiological characteristics. Because of the concentration of Se in both buckwheat taxa and selenomethionine as the dominant species of Se, Se-enriched buckwheat is a potential source of dietary Se for animals and humans

    Celično-biološki mehanizmi delovanja amnijske membrane proti raku in možnosti za njeno uporabo pri zdravljenju raka

    Get PDF
    Izhodišče: Osnovna naloga amnijske membrane je zaščita ploda pred zunanjimi mehanskimi vplivi in izsušitvijo ter zagotavljanje primernega okolja za njegov razvoj. Razumevanje zgradbe in delovanja amnijske membrane je pomembno za njeno klinično uporabo, še posebej v regenerativni medicini. V prispevku opisujemo številne, za regenerativno medicino zelo zaželene mehanske in biološke lastnosti amnijske membrane ter predstavljamo njene protirakave lastnosti. Zaključek: Študije na modelih in vitro kot tudi študije na živalskih modelih dokazujejo, da amnijska membrana zavira proliferacijo rakavih celic in sproža njihovo apoptozo, deluje imunozaviralno, zavira energijsko presnovo rakavih celic in angiogenezo. Delo podaja pregled najnovejših spoznanj o protirakavem delovanju amnijske membrane in vrednoti njeno potencialno uporabo v zdravljenju raka in regenerativni medicini

    Histological Skin Remodeling Following Autologous Fibroblast Application

    Get PDF
    ABSTRACT The aim of this study was to quantify the effectiveness of intradermal application of autologous fibroblasts on lean tissue structures. The histological sections of the skin were analysed and evaluated for the expansion potential of autologous fibroblasts in the control skin patch area and the nearby pre-treated skin patch into which we had injected expanded autologous fibroblasts nine month earlier. The results show that the pre-injection of fibroblasts into the dermis leads to a long-term rejuvenation of the skin, as evaluated from the histological appearance and from the significantly increased density of fibroblasts in the pre-injected skin vs. controls, from around 60% to over 80%, determined as the percent of lean tissue by a novel image analysis approach. Interestingly, the rate of the in vitro fibroblast expansion from the pre-injected area of the skin was reduced in comparison with the controls, consistent with the view that fibroblasts exhibit a limited cell-division potential and that fibroblasts from the pre-injected skin already experienced expansion nine month earlier prior to the injection into the skin. We conclude that autologous fibroblast application results in a significant long-term augmentation of the lean tissue elements of the skin

    Freeze-Fracture Replica Immunolabelling Reveals Urothelial Plaques in Cultured Urothelial Cells

    Get PDF
    The primary function of the urothelium is to provide the tightest and most impermeable barrier in the body, i.e. the blood-urine barrier. Urothelial plaques are formed and inserted into the apical plasma membrane during advanced stages of urothelial cell differentiation. Currently, it is supposed that differentiation with the final formation of urothelial plaques is hindered in cultured urothelial cells. With the aid of the high-resolution imaging technique of freeze-fracture replica immunolabelling, we here provide evidence that urothelial cells in vitro form uroplakin-positive urothelial plaques, localized in fusiform-shaped vesicles and apical plasma membranes. With the establishment of such an in vitro model of urothelial cells with fully developed urothelial plaques and functional properties equivalent to normal bladder urothelium, new perspectives have emerged which challenge prevailing concepts of apical plasma membrane biogenesis and blood-urine barrier development. This may hopefully provide a timely impulse for many ongoing studies and open up new questions for future research

    Comparative lipidomic study of urothelial cancer models: association with urothelial cancer cell invasiveness

    Get PDF
    A joint NMR/LC-MS approach allows to establish significant differences in the lipidoma of invasive urothelial carcinoma cells (T24) with respect to noninvasive urothelial cells (RT4)

    Detrimental Effect of Various Preparations of the Human Amniotic Membrane Homogenate on the 2D and 3D Bladder Cancer In vitro Models

    Get PDF
    Despite being among the ten most common cancers with high recurrence rates worldwide, there have been no major breakthroughs in the standard treatment options for bladder cancer in recent years. The use of a human amniotic membrane (hAM) to treat cancer is one of the promising ideas that have emerged in recent years. This study aimed to investigate the anticancer activity of hAM homogenate on 2D and 3D cancer models. We evaluated the effects of hAM homogenates on the human muscle invasive bladder cancer urothelial (T24) cells, papillary cancer urothelial (RT4) cells and normal porcine urothelial (NPU) cells as well as on human mammary gland non-tumorigenic (MCF10a) cells and low-metastatic breast cancer (MCF7) cells. After 24 h, we observed a gradual detachment of cancerous cells from the culture surface, while the hAM homogenate did not affect the normal cells. The most pronounced effect hAM homogenate had on bladder cancer cells; however, the potency of their detachment was dependent on the treatment protocol and the preparation of hAM homogenate. We demonstrated that hAM homogenate significantly decreased the adhesion, growth, and proliferation of human bladder invasive and papillary cancer urothelial cells and did not affect normal urothelial cells even in 7-day treatment. By using light and electron microscopy we showed that hAM homogenate disrupted the architecture of 2D and 3D bladder cancer models. The information provided by our study highlights the detrimental effect of hAM homogenate on bladder cancer cells and strengthens the idea of the potential clinical application of hAM for bladder cancer treatment

    Amnijska membrana kot biološki nosilec, njena priprava in uporaba v regenerativni medicini v Sloveniji

    Get PDF
    Izhodišča: Amnijska membrana (AM) je notranja stran posteljice, ki obdaja in ščiti zarodek. AM je večplastna struktura, ki je sestavljena iz amnijskih epitelijskih celic, amnijskih mezenhimskih stromalnih celic, bazalne lamine in vezivnega tkiva. Iz njene zgradbe izhajajo tudi lastnosti AM, zaradi katerih se že vrsto let uporablja v terapevtske namene, predvsem v oftalmologiji, saj pospešuje epitelizacijo, deluje kot substrat za celice, zmanjšuje fibrozo in neovaskularizacijo tkiva ter deluje protimikrobno. Zaradi mehanskih lastnosti AM, ki so posledica predvsem molekul zunajceličnega matriksa bazalne lamine in vezivnega tkiva, se AM v zadnjih letih vedno pogosteje uporablja tudi kot biološki nosilec v regenerativni medicini.   Zaključki: Regenerativna medicina je interdisciplinarno področje raziskav in kliničnih aplikacij, ki uporablja načela bioloških in inženirskih znanosti za razvoj živih tkivnih ali organskih nadomestkov. V regenerativni medicini ločimo tri pristope: 1) vsaditev funkcionalnih celic, med drugim tudi matičnih celic, v poškodovano ali okvarjeno tkivo, 2) uporaba različnih sintetičnih materialov ali materialov naravnega izvora, ki pomagajo pri ponovnem oblikovanju poškodovanega ali okvarjenega tkiva in 3) tkivno inženirstvo, tj. uporaba ustreznih nosilcev, ki spodbujajo rast tkivno specifičnih celic in oblikovanje novega tkiva. V prispevku predstavljamo tudi uporabo amnijske membrane kot biološkega nosilca v regenerativni medicini v Sloveniji

    Human amniotic membrane inhibits migration and invasion of muscle-invasive bladder cancer urothelial cells by downregulating the FAK/PI3K/Akt/mTOR signalling pathway

    Get PDF
    Bladder cancer is the 10th most commonly diagnosed cancer with the highest lifetime treatment costs. The human amniotic membrane (hAM) is the innermost foetal membrane that possesses a wide range of biological properties, including anti-inflammatory, antimicrobial and anticancer properties. Despite the growing number of studies, the mechanisms associated with the anticancer effects of human amniotic membrane (hAM) are poorly understood. Here, we reported that hAM preparations (homogenate and extract) inhibited the expression of the epithelial–mesenchymal transition markers N-cadherin and MMP-2 in bladder cancer urothelial cells in a dose-dependent manner, while increasing the secretion of TIMP-2. Moreover, hAM homogenate exerted its antimigratory effect by downregulating the expression of FAK and proteins involved in actin cytoskeleton reorganisation, such as cortactin and small RhoGTPases. In muscle-invasive cancer urothelial cells, hAM homogenate downregulated the PI3K/Akt/mTOR signalling pathway, the key cascade involved in promoting bladder cancer. By using normal, non-invasive papilloma and muscle-invasive cancer urothelial models, new perspectives on the anticancer effects of hAM have emerged. The results identify new sites for therapeutic intervention and are prompt encouragement for ongoing anticancer drug development studies

    The Cells and Extracellular Matrix of Human Amniotic Membrane Hinder the Growth and Invasive Potential of Bladder Urothelial Cancer Cells

    Get PDF
    Bladder cancer is one of the most common cancers among men in industrialized countries and on the global level incidence and mortality rates are increasing. In spite of progress in surgical treatment and chemotherapy, the prognosis remains poor for patients with muscle-invasive bladder cancer. Therefore, there is a great need for the development of novel therapeutic approaches. The human amniotic membrane (hAM) is a multi-layered membrane that comprises the innermost part of the placenta. It has unique properties that make it suitable for clinical use, such as the ability to promote wound healing and decrease scarring, low immunogenicity, and immunomodulatory, antimicrobial and anticancer properties. This study aimed to investigate the effect of (i) hAM-derived cells and (ii) hAM scaffolds on the growth dynamics, proliferation rate, and invasive potential of muscle-invasive bladder cancer T24 cells. Our results show that 24 and 48 h of co-culturing T24 cells with hAM-derived cells (at 1:1 and 1:4 ratios) diminished the proliferation rate of T24 cells. Furthermore, when seeded on hAM scaffolds, namely (1) epithelium of hAM (e-hAM), (2) basal lamina of hAM (denuded; d-hAM), and (3) stroma of hAM (s-hAM), the growth dynamic of T24 cells was altered and proliferation was reduced, even more so by the e-hAM scaffolds. Importantly, despite their muscle-invasive potential, the T24 cells did not disrupt the basal lamina of hAM scaffolds. Furthermore, we observed a decrease in the expression of epithelialmesenchymal transition (EMT) markers N-cadherin, Snail and Slug in T24 cells grown on hAM scaffolds and individual T24 cells even expressed epithelial markers E-cadherin and occludin. Our study brings new knowledge on basic mechanisms of hAM affecting bladder carcinogenesis and the results serve as a good foundation for further research into the potential of hAM-derived cells and the hAM extracellular matrix to serve as a novel bladder cancer treatment
    corecore