8 research outputs found

    Orthogonal Projection of an Infinite Round Cone in Real Hilbert Space

    Get PDF
    We fully characterize orthogonal projections of infinite right circular (round) cones in real Hilbert spaces. Another interpretation is that, given two vectors in a real Hilbert space, we establish the optimal estimate on the angle between the orthogonal projections of the two vectors. The estimate depends on the angle between the two vectors and the position of only one of the two vectors. Our results also make a contributions to Cauchy-Bunyakovsky-Schwarz type inequalities

    Osvrt na predloženi model monetizacije autocesta u Hrvatskoj

    Get PDF
    Vlada Republike Hrvatske zatražila je od savjetnika izradu studije o monetizaciji javnih autocesta. Istaknuti razlozi monetizacije su pribavljanje sredstava za nove državne investicije, rjeÅ”avanje pitanja visoke zaduženosti javnih autocesta, te smanjenje javnog duga. Savjetnik je propustio detaljnije ispitati ostale mogućnosti monetizacije osim izdavanja autocesta u koncesiju. Autor analizira izvjeÅ”taj savjetnika monetizacije i prvi ukazuje na značajne propuste koji su umanjili indikativan iznos monetizacije. Cijena monetizacije uspoređena je sa kamatnom stopom na kreditno zaduženje. Na osnovi usporedivih transakcija, kvantificirani su i vrednovani neke značajni rizici predloženog modela. U drugom dijelu uspoređuje se poslovanje autocesta u tuzemstvu i susjednim zemljama, te iznose moguće optimizacije poslovanja. Rad ukazuju na značajan financijski potencijal i vrijednost predmetne infrastrukture. Financijsko stanje autocesta posljedica je loÅ”eg ulaganja i upravljanja, a predloženi model monetizacije djeluje na način da se trenutni stupanj sposobnosti javne vlasti projicira i zaključa na dugi vremenski rok. Autor nudi novi model gospodarenja autocestama

    Static model of stent based on the model of nonlinear hyperelastic rod

    Get PDF
    Stent je mrežica koja zatvara oblik cjevčice, sa primjenom u medicini. Klinički ishodi procedure dobrim dijelom ovise o mehaničkim svojstvima stenta koji se implantira. Mehanička svojstva stenta ovise o obliku, načinu proizvodnje i materijalima od koji je napravljen. U ovom radu razvijen je matematički model koji se može primijeniti kod onih stentova koji ima oblik mrežice sastavljene od bridova (Å”tapića), a gdje su krajevi bridova međusobno fiksno spojeni. Spojevi krajeva raznih bridova nazivamo vrhovi. Kako bi se smanjili troÅ”kovi i ubrzao razvoj potrebno je procijeniti mehanička svojstva stenta joÅ” u fazi dizajna stenta. U tu svrhu provode se računalne simulacije koje su do sada počivale na 3D modelima elastičnosti ili elastoplastičnosti. Takve su simulacije izrazito zahtjevne za suvremena računala. Nedavno je razvijen linearan 1D model elastičnog stenta, tako da računalne simulacije koje se na njemu temelje zahtjeva ju znatno manje računalnih resursa. Međutim, rezultati linearnog modela opravdani su samo kod malenih deformacija. Novi nelinearan 1D model elastičnog stenta, koji je u ovom radu razvijen i opravdan, može biti temelj za razvoj efikasnih numeričkih algoritama koji će biti točni i za veće deformacije. Novi model stenta temelji se na poznatom 1D nelinearnom hiperelastičnom modelu Å”tapa Scardia (2006), koji je formuliran kao problem minimizacije funkcionala tzv. unutarnje energije. U modelu stenta se prirodno koristi model Å”tapova koji predstavljaju bridove mreže. Model dopuÅ”ta savijanje i torziju bridova. Postojeći model Å”tapa ovdje je poopćen na manje regularne geometrije, a zatim uparen s rubnim uvjetima. Postojanje rjeÅ”enja rubnog problema pokazano je uz pomoć standardnih matematičkih tehnika varijacijskog računa i nekih novih geometrijskih rezultata o krivuljama u prostoru. Dalje je koriÅ”tenjem teorije Ī“\Gamma -konvergencije pokazana jedna vrsta neprekidne ovisnosti rubnog problema Å”tapa o njegovim parametrima. Ovaj rezultat stabilnosti može biti važan u praktičnim računalnim simulacijama jer otklanja mogućnost da malene promjene u geometriji stenta uzrokuju drastično različita mehanička svojstva. Nadalje, taj rezultat omogućuje aproksimaciju krivulja u računalnim simulacijama, npr. sa p o dijelovima ravnim elementima. Model stenta iskazan je u minimizacijskoj formulaciji, koja prirodno proizlazi iz formulacije modela Å”tapa. Pokazano je kako se model može poopćiti i na druge strukture sastavljene o d Å”tapova (npr. građevine sastavljene o d tankih Å”tap ova). Matematički rezultati sastoje se od dokaza postojanja rjeÅ”enja i stabilnosti minimizacijske zadaće u odnosu na geometriju koju stent zauzima. Rezultati za stent prirodno se nadovezuju na pokazane rezultate za Å”tap. Osim spomenutih matematičkih metoda koriÅ”teni su i drugi elementi: iz realne analize, topologije, geometrije i teorije grafova. U izdvojenom odjeljku diskutirana je sila i predloženo kako provesti mehaničko testiranje stenta i eksperimentalnu validaciju prikazanog matematičkog modela.Classical elasticity: Even though the current bio engineering literature models stent exclusively as a single 3D elastic body, we approach stent modeling by simulating slender stent struts as 1D nonlinear rods. Simulating slender stent struts using 3D approaches (3D Finite Elements) is computationally very expensive and time consuming. This makes testing of a large number of stents for optimal stent design computationally prohibitive, and often times produces simulation results with poor accuracy. This is where our approach could prove advantageous: it could speed up the computation by the order of magnitude while keeping the accuracy of results, even when deformations are large. The approach has been applied in Tambača et al. (2010) to model equilibrium deformation within the scope of the linearized elasticity. We are not aware of any research related to the 1D stent modelling using 1D nonlinear rod models. Thus this work is original indeed. Main results: Nonlinear 1D stent models are based on the use of 1D model for struts plus junction conditions on vertices. We take the 1D nonlinear bending-torsion model for curved rods that was rigorously derived from nonlinear three-dimensional elasticity in Scardia (2006). This nonlinear curved rod model is derived by Ī“\Gammaā€“convergence techniques applied to the elastic energy and for the middle curve of the undeformed curved rod parameterized by a C2C^2 function. This is what we do: 1. generalize formulation of the 1D model of elastic curved rods to include Lipschitz middle curves, 2. prove existence of a solution of the boundary value problem for the generalized formulation of the nonlinear curved rod model, 3. prove continuity (stability) of the model with respect to the geometry of the undeformed rod, 4. formulate the 1D model for general structure that consists of rods and prove the existence of the solution, 5. formulate the 1D model for stent and prove the existence of the solution, 6. prove continuity (stability) of the stent model with respect to the geometry of the stent, 7. investigate the loads that can be replicated in an experiment and used in this stent model. Junction of two curves is not necessarily smooth. Complex junctions app ear naturally in stents: for example where three or more rods join together. Thus, in order to build a stent model, one first needs to reformulate the 1D model to be well defined for the Lipschitz curved rods. Analysis of the properties of the rod model serves as the good introduction in analysis of the more complex stent models. The results of this analysis also have their own merit. Continuity with respect to undeformed geometry is important feature of the model. It provides also a justification for our generalized model in case of less regular middle curve geometries mentioned above. Similar analysis for the linear Naghdi shell model for shells with little regularity is performed in Blouza, A. Le Dret (2001). This continuity is done using curves of the same and of different lengths. Obtained continuity property is important in order to simplify numerical approximation of the model. Formulation of the stent model is the starting point for the stent modeling. From the mathematical point of view the existence of the solution is important in order to have well posed problem. Continuity of the stent model with respect to the geometry is important from several points of view. It can be viewed as a stability result which is important in any kind of modeling. It also can be used to approximate the rod geometry by piecewise linear geometry which is easier to discretize. Methodology: The formulation of this model is by minimization of the total energy functional on a suitably chosen set of admissible deformations. For this part of the project we will apply direct methods of the calculus of variations. The formulation of the boundary value problem of the nonlinear bending-torsion rod model for specific loads can be described as a minimization problem for RāˆˆW1,2(0,l;SO(3))R \in W^{1,2}(0, l; SO(3)) on a suitably chosen set of functions including boundary conditions. The columns of RR are the tangent, normal and binormal, i.e., the Frenet frame, to the rodā€™s deformed middle curve. As R(s)āˆˆSO(3)R(s) \in SO(3) the rod is inextensible and unshearable. The strain in the model from Scardia (2006) is given as the difference RT.RĖ™āˆ’QT.QĖ™R^T.\dot{R}-Q^T.\dot{Q} , where the columns of QQ form the Frenet frame of the undeformed geometry. This formulation requires at least QāˆˆW1,2(0,l;SO(3))Q \in W^{1,2}(0, l; SO(3)). However, the rotation RR can be viewed as a rotation PP applied at the undeformed geometry, i.e., R(s)=P(s).Q(s),sāˆˆ[0,l]R(s) = P(s).Q(s), s \in [0, l]. A simple calculation shows that the boundary value problems can be easily reformulated in terms of the ā€™transformation rotationā€™ PP. Such formulations have no derivatives on QQ and the models are now well formulated for PāˆˆW1,2(0,l;SO(3))P \in W^{1,2}(0, l; SO(3)) and any measurable QQ with values in SO(3)SO(3) almost everywhere, i.e., QāˆˆL1(0,l;SO(3))Q \in L^1(0, l; SO(3)). This implies that the new formulation includes Lipschitz middle curves. For example, the new formulation is well defined for undeformed geometries with corners. This is in agreement with the one-dimensional model of junction of rods Tambača & Velčić (2012). As a consequence of general theory, Ī“\Gamma-limit functional is lower semicontinuous and if it is bounded from below on a compact set it attains minima on the set. However, in Scardia (2006) no loads and boundary conditions are prescribed and additionally, as mentioned above, we have reformulated the model. We will prove the existence of the boundary value problem of the new formulation of the model by classical direct methods of calculus of variations. In the case of the boundary value problem for rods clamped at both ends the most difficult part, due to the inextensibility of the rod, is to show that the set of admissible functions is nonempty. Let us consider a sequence of geometries described by QnāˆˆL2Q_n \in L^2 that converge to QQ in L2L^2. For the model with both ends clamped we will show that the sequence of total energy functionals associated with QnQ_n, in the appropriate topology (in which minimizers converge), Ī“\Gammaā€“converges to the total energy functional associated with QQ, in case QQ is somewhat special. As a consequence, limit points of a sequence of any minimizer of energy for the geometry QnQ_n are minimizers of the energy for the limit geometry QQ. To prove this we build a complex result about approximation of the deformed geometry with precise estimates. In the case of rod clamped at only one end the situation is more simple as no special geometry result is necessary. The key step in construction of strongly convergent approximation sequence for use in the lim sup inequality of the Ī“\Gamma-convergence is based on the following result: for undeformed geometry QQ, deformation rotation PP, two endpoints v0,v1v_0, v_1 of the curve given by P.QP.Q we get that for all Q~,v~0,v~1 \tilde{Q}, \tilde{v}_0, \tilde{v}_1 such that āˆ„Qā€“Q~āˆ„,āˆ„v~0ā€“v0āˆ„,āˆ„v~1ā€“v1āˆ„ \| Qā€“\tilde{Q} \|, \| \tilde{v}_0ā€“v_0 \| , \| \tilde{v}_1ā€“v_1 \| are small enough there is P~\tilde{P} with the same values at ends as PP, such that P~.Q~\tilde{P}.\tilde{Q} connects v~0\tilde{v}_0 and v~1\tilde{v}_1 and furthermore which is close enough to PP in W1,2W^{1,2}. We prove it using the inverse function theorem with precise estimates, see Xinghua (1999). Finally, we use nonlinear bending-torsion curved rod model to model stent struts and more genereal structures. Junction conditions at vertices are given similarly as in the linear case by: continuity of the displacement of the middle curve of the struts joining in the vertex and continuity of the rotation of the cross-section of the struts joining in the vertex (this means that deformation rotation is well defined for vertices). Nonemptyness of the admissible function set is trivial as we suppose that the stent is already built and the reference position satisfies the junction conditions. Then the existence result follows using classical methods of calculus of variations. We obtain the continuity of the stent model with respect to geometry by using Ī“\Gammaā€“convergence of the total energy functional, see e.g. Braides (2002) for details on Ī“\Gammaā€“convergence. The most delicate limsup result is obtained based on the geometrical approximation lemma stated earlier for one rod, and some delicate analysis. One hard case of continuity result is solved by introducing the notion of equivalence between stents

    Static model of stent based on the model of nonlinear hyperelastic rod

    Get PDF
    Stent je mrežica koja zatvara oblik cjevčice, sa primjenom u medicini. Klinički ishodi procedure dobrim dijelom ovise o mehaničkim svojstvima stenta koji se implantira. Mehanička svojstva stenta ovise o obliku, načinu proizvodnje i materijalima od koji je napravljen. U ovom radu razvijen je matematički model koji se može primijeniti kod onih stentova koji ima oblik mrežice sastavljene od bridova (Å”tapića), a gdje su krajevi bridova međusobno fiksno spojeni. Spojevi krajeva raznih bridova nazivamo vrhovi. Kako bi se smanjili troÅ”kovi i ubrzao razvoj potrebno je procijeniti mehanička svojstva stenta joÅ” u fazi dizajna stenta. U tu svrhu provode se računalne simulacije koje su do sada počivale na 3D modelima elastičnosti ili elastoplastičnosti. Takve su simulacije izrazito zahtjevne za suvremena računala. Nedavno je razvijen linearan 1D model elastičnog stenta, tako da računalne simulacije koje se na njemu temelje zahtjeva ju znatno manje računalnih resursa. Međutim, rezultati linearnog modela opravdani su samo kod malenih deformacija. Novi nelinearan 1D model elastičnog stenta, koji je u ovom radu razvijen i opravdan, može biti temelj za razvoj efikasnih numeričkih algoritama koji će biti točni i za veće deformacije. Novi model stenta temelji se na poznatom 1D nelinearnom hiperelastičnom modelu Å”tapa Scardia (2006), koji je formuliran kao problem minimizacije funkcionala tzv. unutarnje energije. U modelu stenta se prirodno koristi model Å”tapova koji predstavljaju bridove mreže. Model dopuÅ”ta savijanje i torziju bridova. Postojeći model Å”tapa ovdje je poopćen na manje regularne geometrije, a zatim uparen s rubnim uvjetima. Postojanje rjeÅ”enja rubnog problema pokazano je uz pomoć standardnih matematičkih tehnika varijacijskog računa i nekih novih geometrijskih rezultata o krivuljama u prostoru. Dalje je koriÅ”tenjem teorije Ī“\Gamma -konvergencije pokazana jedna vrsta neprekidne ovisnosti rubnog problema Å”tapa o njegovim parametrima. Ovaj rezultat stabilnosti može biti važan u praktičnim računalnim simulacijama jer otklanja mogućnost da malene promjene u geometriji stenta uzrokuju drastično različita mehanička svojstva. Nadalje, taj rezultat omogućuje aproksimaciju krivulja u računalnim simulacijama, npr. sa p o dijelovima ravnim elementima. Model stenta iskazan je u minimizacijskoj formulaciji, koja prirodno proizlazi iz formulacije modela Å”tapa. Pokazano je kako se model može poopćiti i na druge strukture sastavljene o d Å”tapova (npr. građevine sastavljene o d tankih Å”tap ova). Matematički rezultati sastoje se od dokaza postojanja rjeÅ”enja i stabilnosti minimizacijske zadaće u odnosu na geometriju koju stent zauzima. Rezultati za stent prirodno se nadovezuju na pokazane rezultate za Å”tap. Osim spomenutih matematičkih metoda koriÅ”teni su i drugi elementi: iz realne analize, topologije, geometrije i teorije grafova. U izdvojenom odjeljku diskutirana je sila i predloženo kako provesti mehaničko testiranje stenta i eksperimentalnu validaciju prikazanog matematičkog modela.Classical elasticity: Even though the current bio engineering literature models stent exclusively as a single 3D elastic body, we approach stent modeling by simulating slender stent struts as 1D nonlinear rods. Simulating slender stent struts using 3D approaches (3D Finite Elements) is computationally very expensive and time consuming. This makes testing of a large number of stents for optimal stent design computationally prohibitive, and often times produces simulation results with poor accuracy. This is where our approach could prove advantageous: it could speed up the computation by the order of magnitude while keeping the accuracy of results, even when deformations are large. The approach has been applied in Tambača et al. (2010) to model equilibrium deformation within the scope of the linearized elasticity. We are not aware of any research related to the 1D stent modelling using 1D nonlinear rod models. Thus this work is original indeed. Main results: Nonlinear 1D stent models are based on the use of 1D model for struts plus junction conditions on vertices. We take the 1D nonlinear bending-torsion model for curved rods that was rigorously derived from nonlinear three-dimensional elasticity in Scardia (2006). This nonlinear curved rod model is derived by Ī“\Gammaā€“convergence techniques applied to the elastic energy and for the middle curve of the undeformed curved rod parameterized by a C2C^2 function. This is what we do: 1. generalize formulation of the 1D model of elastic curved rods to include Lipschitz middle curves, 2. prove existence of a solution of the boundary value problem for the generalized formulation of the nonlinear curved rod model, 3. prove continuity (stability) of the model with respect to the geometry of the undeformed rod, 4. formulate the 1D model for general structure that consists of rods and prove the existence of the solution, 5. formulate the 1D model for stent and prove the existence of the solution, 6. prove continuity (stability) of the stent model with respect to the geometry of the stent, 7. investigate the loads that can be replicated in an experiment and used in this stent model. Junction of two curves is not necessarily smooth. Complex junctions app ear naturally in stents: for example where three or more rods join together. Thus, in order to build a stent model, one first needs to reformulate the 1D model to be well defined for the Lipschitz curved rods. Analysis of the properties of the rod model serves as the good introduction in analysis of the more complex stent models. The results of this analysis also have their own merit. Continuity with respect to undeformed geometry is important feature of the model. It provides also a justification for our generalized model in case of less regular middle curve geometries mentioned above. Similar analysis for the linear Naghdi shell model for shells with little regularity is performed in Blouza, A. Le Dret (2001). This continuity is done using curves of the same and of different lengths. Obtained continuity property is important in order to simplify numerical approximation of the model. Formulation of the stent model is the starting point for the stent modeling. From the mathematical point of view the existence of the solution is important in order to have well posed problem. Continuity of the stent model with respect to the geometry is important from several points of view. It can be viewed as a stability result which is important in any kind of modeling. It also can be used to approximate the rod geometry by piecewise linear geometry which is easier to discretize. Methodology: The formulation of this model is by minimization of the total energy functional on a suitably chosen set of admissible deformations. For this part of the project we will apply direct methods of the calculus of variations. The formulation of the boundary value problem of the nonlinear bending-torsion rod model for specific loads can be described as a minimization problem for RāˆˆW1,2(0,l;SO(3))R \in W^{1,2}(0, l; SO(3)) on a suitably chosen set of functions including boundary conditions. The columns of RR are the tangent, normal and binormal, i.e., the Frenet frame, to the rodā€™s deformed middle curve. As R(s)āˆˆSO(3)R(s) \in SO(3) the rod is inextensible and unshearable. The strain in the model from Scardia (2006) is given as the difference RT.RĖ™āˆ’QT.QĖ™R^T.\dot{R}-Q^T.\dot{Q} , where the columns of QQ form the Frenet frame of the undeformed geometry. This formulation requires at least QāˆˆW1,2(0,l;SO(3))Q \in W^{1,2}(0, l; SO(3)). However, the rotation RR can be viewed as a rotation PP applied at the undeformed geometry, i.e., R(s)=P(s).Q(s),sāˆˆ[0,l]R(s) = P(s).Q(s), s \in [0, l]. A simple calculation shows that the boundary value problems can be easily reformulated in terms of the ā€™transformation rotationā€™ PP. Such formulations have no derivatives on QQ and the models are now well formulated for PāˆˆW1,2(0,l;SO(3))P \in W^{1,2}(0, l; SO(3)) and any measurable QQ with values in SO(3)SO(3) almost everywhere, i.e., QāˆˆL1(0,l;SO(3))Q \in L^1(0, l; SO(3)). This implies that the new formulation includes Lipschitz middle curves. For example, the new formulation is well defined for undeformed geometries with corners. This is in agreement with the one-dimensional model of junction of rods Tambača & Velčić (2012). As a consequence of general theory, Ī“\Gamma-limit functional is lower semicontinuous and if it is bounded from below on a compact set it attains minima on the set. However, in Scardia (2006) no loads and boundary conditions are prescribed and additionally, as mentioned above, we have reformulated the model. We will prove the existence of the boundary value problem of the new formulation of the model by classical direct methods of calculus of variations. In the case of the boundary value problem for rods clamped at both ends the most difficult part, due to the inextensibility of the rod, is to show that the set of admissible functions is nonempty. Let us consider a sequence of geometries described by QnāˆˆL2Q_n \in L^2 that converge to QQ in L2L^2. For the model with both ends clamped we will show that the sequence of total energy functionals associated with QnQ_n, in the appropriate topology (in which minimizers converge), Ī“\Gammaā€“converges to the total energy functional associated with QQ, in case QQ is somewhat special. As a consequence, limit points of a sequence of any minimizer of energy for the geometry QnQ_n are minimizers of the energy for the limit geometry QQ. To prove this we build a complex result about approximation of the deformed geometry with precise estimates. In the case of rod clamped at only one end the situation is more simple as no special geometry result is necessary. The key step in construction of strongly convergent approximation sequence for use in the lim sup inequality of the Ī“\Gamma-convergence is based on the following result: for undeformed geometry QQ, deformation rotation PP, two endpoints v0,v1v_0, v_1 of the curve given by P.QP.Q we get that for all Q~,v~0,v~1 \tilde{Q}, \tilde{v}_0, \tilde{v}_1 such that āˆ„Qā€“Q~āˆ„,āˆ„v~0ā€“v0āˆ„,āˆ„v~1ā€“v1āˆ„ \| Qā€“\tilde{Q} \|, \| \tilde{v}_0ā€“v_0 \| , \| \tilde{v}_1ā€“v_1 \| are small enough there is P~\tilde{P} with the same values at ends as PP, such that P~.Q~\tilde{P}.\tilde{Q} connects v~0\tilde{v}_0 and v~1\tilde{v}_1 and furthermore which is close enough to PP in W1,2W^{1,2}. We prove it using the inverse function theorem with precise estimates, see Xinghua (1999). Finally, we use nonlinear bending-torsion curved rod model to model stent struts and more genereal structures. Junction conditions at vertices are given similarly as in the linear case by: continuity of the displacement of the middle curve of the struts joining in the vertex and continuity of the rotation of the cross-section of the struts joining in the vertex (this means that deformation rotation is well defined for vertices). Nonemptyness of the admissible function set is trivial as we suppose that the stent is already built and the reference position satisfies the junction conditions. Then the existence result follows using classical methods of calculus of variations. We obtain the continuity of the stent model with respect to geometry by using Ī“\Gammaā€“convergence of the total energy functional, see e.g. Braides (2002) for details on Ī“\Gammaā€“convergence. The most delicate limsup result is obtained based on the geometrical approximation lemma stated earlier for one rod, and some delicate analysis. One hard case of continuity result is solved by introducing the notion of equivalence between stents

    Static model of stent based on the model of nonlinear hyperelastic rod

    Get PDF
    Stent je mrežica koja zatvara oblik cjevčice, sa primjenom u medicini. Klinički ishodi procedure dobrim dijelom ovise o mehaničkim svojstvima stenta koji se implantira. Mehanička svojstva stenta ovise o obliku, načinu proizvodnje i materijalima od koji je napravljen. U ovom radu razvijen je matematički model koji se može primijeniti kod onih stentova koji ima oblik mrežice sastavljene od bridova (Å”tapića), a gdje su krajevi bridova međusobno fiksno spojeni. Spojevi krajeva raznih bridova nazivamo vrhovi. Kako bi se smanjili troÅ”kovi i ubrzao razvoj potrebno je procijeniti mehanička svojstva stenta joÅ” u fazi dizajna stenta. U tu svrhu provode se računalne simulacije koje su do sada počivale na 3D modelima elastičnosti ili elastoplastičnosti. Takve su simulacije izrazito zahtjevne za suvremena računala. Nedavno je razvijen linearan 1D model elastičnog stenta, tako da računalne simulacije koje se na njemu temelje zahtjeva ju znatno manje računalnih resursa. Međutim, rezultati linearnog modela opravdani su samo kod malenih deformacija. Novi nelinearan 1D model elastičnog stenta, koji je u ovom radu razvijen i opravdan, može biti temelj za razvoj efikasnih numeričkih algoritama koji će biti točni i za veće deformacije. Novi model stenta temelji se na poznatom 1D nelinearnom hiperelastičnom modelu Å”tapa Scardia (2006), koji je formuliran kao problem minimizacije funkcionala tzv. unutarnje energije. U modelu stenta se prirodno koristi model Å”tapova koji predstavljaju bridove mreže. Model dopuÅ”ta savijanje i torziju bridova. Postojeći model Å”tapa ovdje je poopćen na manje regularne geometrije, a zatim uparen s rubnim uvjetima. Postojanje rjeÅ”enja rubnog problema pokazano je uz pomoć standardnih matematičkih tehnika varijacijskog računa i nekih novih geometrijskih rezultata o krivuljama u prostoru. Dalje je koriÅ”tenjem teorije Ī“\Gamma -konvergencije pokazana jedna vrsta neprekidne ovisnosti rubnog problema Å”tapa o njegovim parametrima. Ovaj rezultat stabilnosti može biti važan u praktičnim računalnim simulacijama jer otklanja mogućnost da malene promjene u geometriji stenta uzrokuju drastično različita mehanička svojstva. Nadalje, taj rezultat omogućuje aproksimaciju krivulja u računalnim simulacijama, npr. sa p o dijelovima ravnim elementima. Model stenta iskazan je u minimizacijskoj formulaciji, koja prirodno proizlazi iz formulacije modela Å”tapa. Pokazano je kako se model može poopćiti i na druge strukture sastavljene o d Å”tapova (npr. građevine sastavljene o d tankih Å”tap ova). Matematički rezultati sastoje se od dokaza postojanja rjeÅ”enja i stabilnosti minimizacijske zadaće u odnosu na geometriju koju stent zauzima. Rezultati za stent prirodno se nadovezuju na pokazane rezultate za Å”tap. Osim spomenutih matematičkih metoda koriÅ”teni su i drugi elementi: iz realne analize, topologije, geometrije i teorije grafova. U izdvojenom odjeljku diskutirana je sila i predloženo kako provesti mehaničko testiranje stenta i eksperimentalnu validaciju prikazanog matematičkog modela.Classical elasticity: Even though the current bio engineering literature models stent exclusively as a single 3D elastic body, we approach stent modeling by simulating slender stent struts as 1D nonlinear rods. Simulating slender stent struts using 3D approaches (3D Finite Elements) is computationally very expensive and time consuming. This makes testing of a large number of stents for optimal stent design computationally prohibitive, and often times produces simulation results with poor accuracy. This is where our approach could prove advantageous: it could speed up the computation by the order of magnitude while keeping the accuracy of results, even when deformations are large. The approach has been applied in Tambača et al. (2010) to model equilibrium deformation within the scope of the linearized elasticity. We are not aware of any research related to the 1D stent modelling using 1D nonlinear rod models. Thus this work is original indeed. Main results: Nonlinear 1D stent models are based on the use of 1D model for struts plus junction conditions on vertices. We take the 1D nonlinear bending-torsion model for curved rods that was rigorously derived from nonlinear three-dimensional elasticity in Scardia (2006). This nonlinear curved rod model is derived by Ī“\Gammaā€“convergence techniques applied to the elastic energy and for the middle curve of the undeformed curved rod parameterized by a C2C^2 function. This is what we do: 1. generalize formulation of the 1D model of elastic curved rods to include Lipschitz middle curves, 2. prove existence of a solution of the boundary value problem for the generalized formulation of the nonlinear curved rod model, 3. prove continuity (stability) of the model with respect to the geometry of the undeformed rod, 4. formulate the 1D model for general structure that consists of rods and prove the existence of the solution, 5. formulate the 1D model for stent and prove the existence of the solution, 6. prove continuity (stability) of the stent model with respect to the geometry of the stent, 7. investigate the loads that can be replicated in an experiment and used in this stent model. Junction of two curves is not necessarily smooth. Complex junctions app ear naturally in stents: for example where three or more rods join together. Thus, in order to build a stent model, one first needs to reformulate the 1D model to be well defined for the Lipschitz curved rods. Analysis of the properties of the rod model serves as the good introduction in analysis of the more complex stent models. The results of this analysis also have their own merit. Continuity with respect to undeformed geometry is important feature of the model. It provides also a justification for our generalized model in case of less regular middle curve geometries mentioned above. Similar analysis for the linear Naghdi shell model for shells with little regularity is performed in Blouza, A. Le Dret (2001). This continuity is done using curves of the same and of different lengths. Obtained continuity property is important in order to simplify numerical approximation of the model. Formulation of the stent model is the starting point for the stent modeling. From the mathematical point of view the existence of the solution is important in order to have well posed problem. Continuity of the stent model with respect to the geometry is important from several points of view. It can be viewed as a stability result which is important in any kind of modeling. It also can be used to approximate the rod geometry by piecewise linear geometry which is easier to discretize. Methodology: The formulation of this model is by minimization of the total energy functional on a suitably chosen set of admissible deformations. For this part of the project we will apply direct methods of the calculus of variations. The formulation of the boundary value problem of the nonlinear bending-torsion rod model for specific loads can be described as a minimization problem for RāˆˆW1,2(0,l;SO(3))R \in W^{1,2}(0, l; SO(3)) on a suitably chosen set of functions including boundary conditions. The columns of RR are the tangent, normal and binormal, i.e., the Frenet frame, to the rodā€™s deformed middle curve. As R(s)āˆˆSO(3)R(s) \in SO(3) the rod is inextensible and unshearable. The strain in the model from Scardia (2006) is given as the difference RT.RĖ™āˆ’QT.QĖ™R^T.\dot{R}-Q^T.\dot{Q} , where the columns of QQ form the Frenet frame of the undeformed geometry. This formulation requires at least QāˆˆW1,2(0,l;SO(3))Q \in W^{1,2}(0, l; SO(3)). However, the rotation RR can be viewed as a rotation PP applied at the undeformed geometry, i.e., R(s)=P(s).Q(s),sāˆˆ[0,l]R(s) = P(s).Q(s), s \in [0, l]. A simple calculation shows that the boundary value problems can be easily reformulated in terms of the ā€™transformation rotationā€™ PP. Such formulations have no derivatives on QQ and the models are now well formulated for PāˆˆW1,2(0,l;SO(3))P \in W^{1,2}(0, l; SO(3)) and any measurable QQ with values in SO(3)SO(3) almost everywhere, i.e., QāˆˆL1(0,l;SO(3))Q \in L^1(0, l; SO(3)). This implies that the new formulation includes Lipschitz middle curves. For example, the new formulation is well defined for undeformed geometries with corners. This is in agreement with the one-dimensional model of junction of rods Tambača & Velčić (2012). As a consequence of general theory, Ī“\Gamma-limit functional is lower semicontinuous and if it is bounded from below on a compact set it attains minima on the set. However, in Scardia (2006) no loads and boundary conditions are prescribed and additionally, as mentioned above, we have reformulated the model. We will prove the existence of the boundary value problem of the new formulation of the model by classical direct methods of calculus of variations. In the case of the boundary value problem for rods clamped at both ends the most difficult part, due to the inextensibility of the rod, is to show that the set of admissible functions is nonempty. Let us consider a sequence of geometries described by QnāˆˆL2Q_n \in L^2 that converge to QQ in L2L^2. For the model with both ends clamped we will show that the sequence of total energy functionals associated with QnQ_n, in the appropriate topology (in which minimizers converge), Ī“\Gammaā€“converges to the total energy functional associated with QQ, in case QQ is somewhat special. As a consequence, limit points of a sequence of any minimizer of energy for the geometry QnQ_n are minimizers of the energy for the limit geometry QQ. To prove this we build a complex result about approximation of the deformed geometry with precise estimates. In the case of rod clamped at only one end the situation is more simple as no special geometry result is necessary. The key step in construction of strongly convergent approximation sequence for use in the lim sup inequality of the Ī“\Gamma-convergence is based on the following result: for undeformed geometry QQ, deformation rotation PP, two endpoints v0,v1v_0, v_1 of the curve given by P.QP.Q we get that for all Q~,v~0,v~1 \tilde{Q}, \tilde{v}_0, \tilde{v}_1 such that āˆ„Qā€“Q~āˆ„,āˆ„v~0ā€“v0āˆ„,āˆ„v~1ā€“v1āˆ„ \| Qā€“\tilde{Q} \|, \| \tilde{v}_0ā€“v_0 \| , \| \tilde{v}_1ā€“v_1 \| are small enough there is P~\tilde{P} with the same values at ends as PP, such that P~.Q~\tilde{P}.\tilde{Q} connects v~0\tilde{v}_0 and v~1\tilde{v}_1 and furthermore which is close enough to PP in W1,2W^{1,2}. We prove it using the inverse function theorem with precise estimates, see Xinghua (1999). Finally, we use nonlinear bending-torsion curved rod model to model stent struts and more genereal structures. Junction conditions at vertices are given similarly as in the linear case by: continuity of the displacement of the middle curve of the struts joining in the vertex and continuity of the rotation of the cross-section of the struts joining in the vertex (this means that deformation rotation is well defined for vertices). Nonemptyness of the admissible function set is trivial as we suppose that the stent is already built and the reference position satisfies the junction conditions. Then the existence result follows using classical methods of calculus of variations. We obtain the continuity of the stent model with respect to geometry by using Ī“\Gammaā€“convergence of the total energy functional, see e.g. Braides (2002) for details on Ī“\Gammaā€“convergence. The most delicate limsup result is obtained based on the geometrical approximation lemma stated earlier for one rod, and some delicate analysis. One hard case of continuity result is solved by introducing the notion of equivalence between stents

    Osvrt na predloženi model monetizacije autocesta u Hrvatskoj

    Get PDF
    Vlada Republike Hrvatske zatražila je od savjetnika izradu studije o monetizaciji javnih autocesta. Istaknuti razlozi monetizacije su pribavljanje sredstava za nove državne investicije, rjeÅ”avanje pitanja visoke zaduženosti javnih autocesta, te smanjenje javnog duga. Savjetnik je propustio detaljnije ispitati ostale mogućnosti monetizacije osim izdavanja autocesta u koncesiju. Autor analizira izvjeÅ”taj savjetnika monetizacije i prvi ukazuje na značajne propuste koji su umanjili indikativan iznos monetizacije. Cijena monetizacije uspoređena je sa kamatnom stopom na kreditno zaduženje. Na osnovi usporedivih transakcija, kvantificirani su i vrednovani neke značajni rizici predloženog modela. U drugom dijelu uspoređuje se poslovanje autocesta u tuzemstvu i susjednim zemljama, te iznose moguće optimizacije poslovanja. Rad ukazuju na značajan financijski potencijal i vrijednost predmetne infrastrukture. Financijsko stanje autocesta posljedica je loÅ”eg ulaganja i upravljanja, a predloženi model monetizacije djeluje na način da se trenutni stupanj sposobnosti javne vlasti projicira i zaključa na dugi vremenski rok. Autor nudi novi model gospodarenja autocestama

    A gas turbine combustion chamber modeling by physical model

    Get PDF
    The validity of the gas turbine unit model largely depends on the accuracy of the flue gas temperature value calculation at the gas turbine inlet (TIT). This temperature is determined by the maximum combustion temperature. In variable running mode, the temperature value is regulated by changing the ratio of air and fuel at the inlet to the combustion chamber. The paper presents a model of a gas turbine combustion chamber using Modelica, an object-oriented language for modeling complex physical systems with the aim of determining the temperature of combustion flue gases, specific heat capacity, enthalpy, and flue gas composition at different gas turbine loads

    Steam Flow Pressure Reduction Valve Mass Flow Calculation

    Get PDF
    In this paper an analysis of the three different calculation methods for the steam mass flow through the linear pressure reduction valve is presented. Two different makers developed their own mass flow calculation method while one is following recommendation as per ISO standard calculation guidance. All three methods were varied and compared. For calculation model a superheated steam reduction valve was taken, which is reducing superheated steam pressure from 6 to 2 MPa, with fixed Kv value and with variations of the inlet superheated steam temperature from 310 to 280 Ā°C
    corecore