192 research outputs found

    The mechanisms of potassium loss in acute myocardial ischemia: New insights from computational simulations

    Get PDF
    : Acute myocardial ischemia induces hyperkalemia (accumulation of extracellular potassium), a major perpetrator of lethal reentrant ventricular arrhythmias. Despite considerable experimental efforts to explain this pathology in the last decades, the intimate mechanisms behind hyperkalemia remain partially unknown. In order to investigate these mechanisms, we developed a novel computational model of acute myocardial ischemia which couples a) an electrophysiologically detailed human cardiomyocyte model that incorporates modifications to account for ischemia-induced changes in transmembrane currents, with b) a model of cardiac tissue and extracellular K + transport. The resulting model is able to reproduce and explain the triphasic time course of extracellular K + concentration within the ischemic zone, with values of [K+]o close to 14 mmol/L in the central ischemic zone after 30 min. In addition, the formation of a [K+]o border zone of approximately 1.2 cm 15 min after the onset of ischemia is predicted by the model. Our results indicate that the primary rising phase of [K+]o is mainly due to the imbalance between K + efflux, that increases slightly, and K + influx, that follows a reduction of the NaK pump activity by more than 50%. The onset of the plateau phase is caused by the appearance of electrical alternans (a novel mechanism identified by the model), which cause an abrupt reduction in the K + efflux. After the plateau, the secondary rising phase of [K+]o is caused by a subsequent imbalance between the K + influx, which continues to decrease slowly, and the K + efflux, which remains almost constant. Further, the study shows that the modulation of these mechanisms by the electrotonic coupling is the main responsible for the formation of the ischemic border zone in tissue, with K + transport playing only a minor role. Finally, the results of the model indicate that the injury current established between the healthy and the altered tissue is not sufficient to depolarize non-ischemic cells within the healthy tissue

    Modeling of the mechano-chemical behavior of the nuclear pore complex: current research and perspectives

    Get PDF
    Recent evidence suggests that mechanical deformation of the cell nucleus regulates the nuclear import of the transcriptional activators of genes involved in primary physiological cell responses such as stem cell differentiation. In addition, this nuclear mechanosensing response is de-regulated in pathological states, such as cancer and neurodegeneration. One hypothesis that could greatly advance the field is that the deformation of the nuclear envelope activates nuclear pore complexes through a direct mechanical link. The understanding of this possible mechanism for nuclear pore complex stretch-activation entails studying the mechanical connection of this complex to the nuclear envelope at the nanoscale. The nanomechanics of the nuclear pore complex is thus emerging as a novel research field, bridging nanoscience with nanotechnology. This review examines the frontier of research methodologies that are potentially useful for building a computational model of this interaction. This includes, for example, electron tomography to assess the geometrical features of the nuclear pore complex and nanoindentation to estimate its mechanical properties and that of the nuclear envelope. In order to summarize the state-of-the-art and perspectives in the field of NPC nanomechanics, this review covers highly interdisciplinary experimental and theoretical research methodologies pertaining to the fields of physics, chemistry, biology, materials and mechanics

    Fruit cell culture as a model system to study cell wall changes during strawberry fruit ripening

    Get PDF
    Strawberry (Fragaria x ananassa, Duch.) fruit is characterized by its fast ripening and soft texture at the ripen stage, resulting in a short postharvest shelf life and high economic losses. It is generally believed that the disassembly of cell walls, the dissolution of the middle lamella and the reduction of cell turgor are the main factors determining the softening of fleshy fruits. In strawberry, several studies indicate that the solubilisation and depolymerisation of pectins, as well as the depolymerisation of xyloglucans, are the main processes occurring during ripening. Functional analyses of genes encoding pectinases such as polygalacturonase and pectate lyase also point out to the pectin fraction as a key factor involved in textural changes. All these studies have been performed with whole fruits, a complex organ containing different tissues that differ in their cell wall composition and undergo ripening at different rates. Cell cultures derived from fruits have been proposed as model systems for the study of several processes occurring during fruit ripening, such as the production of anthocyanin and its regulation by plant hormones. The main objective of this research was to obtain and characterize strawberry cell cultures to evaluate their potential use as a model for the study of the cell wall disassembly process associate with fruit ripening. Cell cultures were obtained from cortical tissue of strawberry fruits, cv. Chandler, at the stages of unripe-green, white and mature-red. Additionally, a cell culture line derived from strawberry leaves was obtained. All cultures were maintained in solid medium supplemented with 2.5 mg.l-1 2,4-D and incubated in the dark. Cell walls from the different callus lines were extracted and fractionated to obtain CDTA and sodium carbonate soluble pectin fractions, which represent polyuronides located in the middle lamella or the primary cell wall, respectively. The amounts of homogalacturonan in both fractions were estimated by ELISA using LM19 and LM20 antibodies, specific against demethylated and methyl-esterified homogalacturonan, respectively. In the CDTA fraction, the cell line from ripe fruit showed a significant lower amount of demethylated pectins than the rest of lines. By contrast, the content of methylated pectins was similar in green- and red-fruit lines, and lower than in white-fruit and leaf lines. In the sodium carbonate pectin fraction, the line from red fruit also showed the lowest amount of pectins. These preliminary results indicate that cell cultures obtained from fruits at different developmental stages differ in their cell wall composition and these differences resemble to some extent the changes that occur during strawberry softening. Experiments are in progress to further characterize cell wall extracts with monoclonal antibodies against other cell wall epitopes.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    New Methodologies for the Development and Validation of Electrophysiological Models

    Get PDF
    De acuerdo a los datos de la Organización Mundial de la Salud, se estima que 17,7 millones de personas murieron de enfermedades cardiacas en 2015, lo que supone el 31% de las muertes, haciendo de estas patologías la primera causa de muerte en el mundo. El corazón es un sistema complejo que trabaja gracias a la interacción de un gran número de elementos en diferentes escalas espaciales y temporales. La función principal del corazón es bombear sangre en todo el cuerpo, siendo esta acción mecánica activada por la estimulación eléctrica. La aparición de problemas en el funcionamiento eléctrico o mecánico del corazón en cualquiera de las escalas involucradas, temporal o espacial, puede dar lugar a un mal funcionamiento cardiaco. El modelado matemático y la simulación de la actividad eléctrica del corazón (denominada electrofisiología cardiaca) y el procesado de señales bioeléctricas proporcionan un marco ideal para unir la información clínica y los estudios experimentales con la comprensión de los mecanismos que subyacen a estos problemas. Debido al gran número de factores que se deben tener en cuenta a la hora de desarrollar y validar un modelo computacional de electrofisiología cardiaca, asi como las complejas interacciones que existen entre ellos, hacen que nuevas metodologías que facilitan la concepción, la actualización y la validación de nuevos modelos sean de gran valor. Estas metodologías pueden enfocarse sea en la definición de las compuertas iónicas de los modelos, como en la propagación del impulso eléctrico en modelos multiescala. Esta tesis pretende mejorar el conocimiento existente sobre electrofisiología cardiaca proponiendo nuevas técnicas para desarrollar y validar modelos computacionales cardiacos, a través de la evaluación de los efectos de los eventos modelados mediante la consideración de las interacciones entre los diferentes componentes del modelo y la simulación de un rango de escalas espacio-temporales.En el capítulo 2, se introdujo un nuevo paradigma para desarrollar un nuevo modelo de potencial de acción de cardiomiocito humano, el modelo CRLP, partiendo de un modelo previamente publicado e incorporando nuevas mediciones experimentales de corrientes de potasio y reformulando la corriente de calcio tipo L. El paradigma introducido se basó en el análisis de la capacidad del modelo para replicar un conjunto de marcadores electrofisiológicos bien establecidos y en un análisis de sensibilidad de esos marcadores a las variaciones en los parámetros del modelo. Una de las ventajas del paradigma propuesto fue la posibilidad de identificar parámetros del modelo que no dependen directamente de las mediciones individuales de corrientes o concentraciones y que comúnmente se establecen ad hoc. El modelo CRLP se validó y se midió su rendimiento en la capacidad para predecir marcadores relacionados con la arritmia ventricular en comparación con el modelo cellular en el que se había basado.En el capítulo 3, se actualizó el modelo CRLP desarrollado en el capítulo 2 para introducir la formulación de la dinámica de potasio intracelular ([K+]i). Esta es una característica importante para la investigación de arritmias ventriculares que surgen en condiciones de hiperpotasemia, uno de los componentes de la isquemia de miocardio. La introducción directa de la dinámica de [K+]i en el modelo generó un desequilibrio en las corrientes de potasio que condugeron a una deriva en [K+]i. Para corregir tal desequilibrio, se propuso un algoritmo de optimización que permitía estimar las conductancias de las corrientes iónicas del modelo CRLP al tiempo que garantizaba valores fisiológicamente plausibles de una selección de propiedades electrofisiológicas, algunas de ellas muy relevantes en el estudio de arritmias ventriculares.Como se mencionó anteriormente, al proponer un nuevo modelo o al actualizar un modelo existente, la coherencia entre los datos simulados y experimentales debe verificarse considerando todos los efectos y escalas involucradas. Cuanto mejor se reproduzcan las condiciones experimentales en las simulaciones, más robusto será el proceso de desarrollo y validación del modelo. En el capítulo 4, se propuso la simulación de protocolos experimentales in silico para analizar cómo las interacciones entre los componentes del modelo afectan el desarrollo y la validación de los modelos matemáticos de canales iónicos; y cómo la propagación afecta los marcadores basados en el potencial de acción cuando son simulados en células aisladas o en preparaciones tisulares, identificando cómo contribuye cada corriente iónica en cada caso. y con los modelos de células ventriculares humanas más recientes publicados en laliteratura.El capítulo 7 resume las principales conclusiones de la tesis y presenta nuevas líneas de investigación que podrían emprenderse en futuros estudios. En conclusión, diferentes técnicas para mejorar el desarrollo y la validación de modelos electrofisiológicos cardíacos han sido propuestos y analizados en esta tesis. Basándose en el aumento de potencia computacional, se han considerado nuevas estrategias para reducir el número de hipótesis y/o supuestos al construir un modelo de potencial de acción de cardiomiocito ventricular. La aplicación de un algoritmo de optimización junto con la simulación in silico de los protocolos experimentales han ayudado a encontrar un modelo que represente mejor los resultados experimentales de los marcadores electrofisiológicos de riesgo arrítmico.El modelo CRLP, desarrollado en el capítulo 2 y actualizado en el capítulo 3, presentaba una forma más bien atípica al final de la fase de despolarización del potencial de acción (fase 1). La simulación in silico de los protocolos experimentales descritos en el capítulo 4 y la metodología de optimización presentada en el capítulo 3 se utilizaron para mejorar la forma del potencial de acción al tiempo que validaba el modelo ajustado a escalas iónicas, celulares y de tejido.En el capítulo 6 se integraron todas las formulaciones iniciales y actualizaciones subsiguientes del modelo CRLP propuestas en los capítulos anteriores y se reajustaron las conductancias iónicas del modelo para mejorar el comportamiento del modelo con respecto a medidas electrofisiológicas experimentales. Todas las metodologías introducidas a lo largo de la tesis se utilizaron para obtener un nuevo modelo de potencial de acción ventricular humano. Para la validación del modelo, se consideró un rango de datos experimentales disponibles a diferentes escalas y destinados a evaluar diferentes propiedades electrofisiológicas. Las condiciones subyacentes a cada uno de los estudios experimentales se replicaron tan fielmente como fue posible. Los resultados simulados con la versión final del modelo CRLP se compararon en todos los casos con todas las evidencias experimentales disponiblesAccording to data from the World Health Organization (WHO), 17.7 million people were estimated to have died of cardiovascular diseases (CVDs) in 2015. This represents 31 of all global deaths, making CVDs the leading cause of death worldwide. The heart is a complex system that works due to the interaction of a large number of elements at different temporal and spatial scales. The main function of the heart is to pump blood throughout the body, with this mechanical action being triggered by electrical impulses. Issues arising in the electrical or mechanical actions of the heart at any of the involved temporal and spatial scales can lead to cardiac malfunctioning. Mathematical modeling and simulation of the heart's electrical activity (so-called cardiac electrophysiology) combined with signal processing of bioelectrical signals provide an ideal framework to join the information from clinical and experimental studies with the understanding of the mechanisms underlying them. Due to the high number of factors involved in the development and validation of cardiac computational electrophysiological models and the intricate interrelationships between them, novel methodologies that help to control the design, update and validation of new models become of great advantage. These methodologies can target from the definition of ionic gating in the simulated cells to the propagation of the electrical impulse in multi-scale models. This thesis aims to improve the existing knowledge on heart's electrophysiology by proposing novel techniques to develop and validate cardiac computational models while accounting for the interactions between model components and including simulations of a range of spatio-temporal scales. In chapter 2, a new paradigm was introduced to develop a novel human ventricular cell model, the CRLP model, by departing from a previously published model, the Grandi-Pasqualini-Bers model (Grandi et al., 2009). Novel experimental measurements of potassium currents were incorporated and the L-type calcium current was reformulated. The introduced paradigm was based on the analysis of the model's ability to replicate a set of well-established electrophysiological markers and on a sensitivity analysis of those markers to variations in model parameters (Romero et al., 2008). A major advantage of the proposed paradigm was the possibility to identify model parameter values that do not directly depend on individual current measurements or concentrations, which are commonly set in an ad hoc manner. The developed CRLP model was validated and its improved capacity to investigate arrhythmia-related properties, as compared to the cell model it was based on, was corroborated. In chapter 3, the CRLP model developed in chapter 2 was updated to introduce the formulation of intracellular potassium ([K+]i) dynamics. This is an important characteristic for investigation of ventricular arrhythmias arising under conditions of hyperkalemia, one of the components of myocardial ischemia (Coronel et al. 1988). Direct introduction of [K+]i dynamics into the model generated an imbalance in the potassium currents leading to a drift in [K+]i. To correct for such an imbalance, an optimization framework was proposed that allowed estimating the ionic current conductances of the CRLP model while guaranteeing physiologically plausible values of selected electrophysiological properties, many of them highly relevant for investigation of ventricular arrhythmias. As mentioned above, when proposing a new model, or when updating an existing model, consistency between simulated and experimental data should be verified by considering all involved effects and scales. The closer the experimental conditions are reproduced in the computer simulations, the more robust the process of model development and validation can be. In chapter 4, in silico simulation of experimental protocols was proposed to analyze: how interactions between model components affect the development and validation of mathematical ion channel models; and how propagation affects action potential (AP)-based markers simulated in isolated cells and in tissue preparations, with identification of the ionic contributors in each case. The CRLP model, developed in chapter 2 and updated in chapter 3, presented a rather atypical shape at the end of the depolarization phase of the AP (phase 1). In chapter 5, the in silico simulations of experimental protocols described in chapter and the optimization methodology introduced in chapter 3 were used to improve the AP shape, while validating the adjusted model at ionic, cell and tissue scales. In chapter 6, all the initial formulations and subsequent updates of the CRLP model proposed in previous chapters were integrated and the ionic conductances of the integrated model were readjusted to improve replication of experimental electrophysiological measures. All the methodologies introduced throughout the thesis were thus used to build a novel human ventricular AP model. For model validation, a range of available experimental data at different scales targetting different electrophysiological properties was considered. Conditions underlying each of the experimental studies were replicated as faithfully as possible. Results simulated with the final version of the CRLP model were in all cases compared with all available experimental evidences and with the most recent human ventricular cell models published in the literature. Chapter 7, summarizes the main conclusions of the thesis and presents new lines of research that could be undertaken in future studies. <br /

    A Harmonic-based Fault detection algorithm for Microgrids

    Full text link
    The trend toward Microgrids (MGs) is significantly increasing by employing Distributed Generators (DGs) which leads to new challenges, especially in the fault detection. This paper proposes an algorithm based on the Total Harmonic Distortion (THD) of the grid voltages to detect the events of faults in MGs. The algorithm uses the THD together with the estimate amplitude voltages and the zero-sequence component for the detection and identification of the faults. The performance is evaluated by using MATLAB/Simulink simulations to validate the capability for detecting different fault types in the least possible time.Comment: Proc. of the Interdisciplinary Conference on Mechanics, Computers and Electrics (ICMECE 2022) 6-7 October 2022, Barcelona, Spai

    Nanostructural changes in cell wall pectins during strawberry fruit ripening assessed by atomic force microscopy

    Get PDF
    Rapid loss of firmness occurs during strawberry (Fragaria × ananassa Duch) ripening, resulting in a short shelf life and high economic losses. The disassembly of cell walls is considered the main responsible for fruit softening, being pectins extensively modified during strawberry ripening (Paniagua et al. 2014). Atomic force microscopy allows the analysis of individual polymer chains at nanostructural level with a minimal sample preparation (Morris et al., 2001). The main objective of this research was to compare pectins of green and red ripe strawberry fruits at the nanostructural level to shed light on structural changes that could be related to softening. Cell walls from strawberry fruits were extracted and fractionated with different solvents to obtain fractions enriched in a specific component. The yield of cell wall material, as well as the amount of the different fractions, decreased in ripe fruits. CDTA and Na2CO3 fractions underwent the largest decrements, being these fractions enriched in pectins supposedly located in the middle lamella and primary cell wall, respectively. Uronic acid content also decreased significantly during ripening in both pectin fractions, but the amount of soluble pectins, those extracted with phenol:acetic acid:water (PAW) and water increased in ripe fruits. Monosaccharide composition in CDTA and Na2CO3 fractions was determined by gas chromatography. In both pectin fractions, the amount of Ara and Gal, the two most abundant carbohydrates, decreased in ripe fruits. The nanostructural characteristics of CDTA and Na2CO3 pectins were analyzed by AFM. Isolated pectic chains present in the CDTA fraction were significantly longer and more branched in samples from green fruits than those present in samples obtained from red fruit. In spite of slight differences in length distributions, Na2CO3 samples from unripe fruits displayed some longer chains at low frequency that were not detected in ripe fruits. Pectin aggregates were more frequently observed in green fruit samples from both fractions. These results support that pectic chain length and the nanostructural complexity of the pectins present in CDTA and Na2CO3 fractions diminish during strawberry fruit development, and these changes, jointly with the loss of neutral sugars, could contribute to the solubilization of pectins and fruit softening. Paniagua et al. (2014). Ann Bot, 114: 1375-1383 Morris et al. (2001). Food Sci Tech 34: 3-10 This research was supported by FEDER EU Funds and the Ministerio de Educación y Ciencia of Spain (grant reference AGL2011-24814)Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Unravelling the nanostructure of strawberry fruit pectins by atomic force microscopy

    Get PDF
    Atomic force microscopy (AFM) allows the analysis of individual polymers at nanostructural level with a minimal sample preparation. This technique has been used to analyse the pectin disassembly process during the ripening and postharvest storage of several fleshy fruits. In general, pectins analysed by AFM are usually visualized as isolated chains, unbranched or with a low number of branchs and, occasionally, as large aggregates. However, the exact nature of these structures is unknown. It has been suggested that pectin aggregates represent a mixture of rhamnonogalacturonan I and homogalacturonan, while isolated chains and their branches are mainly composed by polygalacturonic acid. In order to gain insight into the nature of these structures, sodium carbonate soluble pectins from ripe strawberry (Fragaria x ananassa, Duch.) fruits were subjected to enzymatic digestion with endo-Polygalacturonase M2 from Aspergillus aculeatus, and the samples visualized by AFM at different time intervals. Pectins isolated from control, non-transformed plants, and two transgenic genotypes with low level of expression of ripening-induced pectinase genes encoding a polygalacturonase (APG) or a pectate lyase (APEL) were also included in this study. Before digestion, isolated pectin chains from control were shorter than those from transgenic fruits, showing number-average (LN) contour length values of 73.2 nm vs. 95.9 nm and 91.4 nm in APG and APEL, respectively. The percentage of branched polymers was significantly higher in APG polyuronides than in the remaining genotypes, 33% in APG vs. 6% in control and APEL. As a result of the endo-PG treatment, a gradual decrease in the main backbone length of isolated chains was observed in the three samples. The minimum LN value was reached after 8 h of digestion, being similar in the three genotypes, 22 nm. By contrast, the branches were not visible after 1.5-2 h of digestion. LN values were plotted against digestion time and the data fitted to a first-order exponential decay curve, obtaining R2 values higher than 0.9. The half digestion time calculated with these equations were similar for control and APG pectins, 1.7 h, but significantly higher in APEL, 2.5 h, indicating that these polymer chains were more resistant to endo-PG digestion. Regarding the pectin aggregates, their volumes were estimated and used to calculate LN molecular weights. Before digestion, control and APEL samples showed complexes of similar molecular weights, 1722 kDa, and slightly higher than those observed in APG samples. After endo-PG digestion, size of complexes diminished significantly, reaching similar values in the three pectin samples, around 650 kDa. These results suggest that isolated polymer chains visualized by AFM are formed by a HG domain linked to a shorter polymer resistant to endo-PG digestion, maybe xylogalacturonan or RG-I. The silencing of the pectate lyase gene slightly modified the structure and/or chemical composition of polymer chains making these polyuronides more resistant to enzymatic degradation. Similarly, polygalacturonic acid is one of the main component of the aggregates.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    corecore