73 research outputs found

    The Burdwood Bank Circulation

    Get PDF
    A suite of high-resolution numerical simulations characterizes the oceanic circulation in the Burdwood Bank, a shallow seamount located in the northeastern end of the Drake Passage. Model analysis shows energetic upwelling and mixing uplifting deep and benthic waters into the photic layer. Tides and the Antarctic Circumpolar Current are the primary drivers of the bank's circulation. Tidal forcing is the main driver for the entrainment of deep waters into the upper layers of the bank and local wind forcing for the detrainment of these waters into the deep ocean. Passive tracer diagnostics suggest that the dynamical processes triggered by the Burdwood Bank could have a significant impact on local ecosystems and the biogeochemical balance of the southwestern Atlantic region, which is one of the most fertile portions of the Southern Ocean. Model results are robust—they are reproduced in a wide array of model configurations—but there is insufficient observational evidence to corroborate them. Satellite color imagery does not show substantial chlorophyll blooms in this region but it shows strong phytoplankton plumes emanating from the bank. There are several potential explanations for the chlorophyll deficit, including lack of light due to persistent cloud cover, deep mixing layers, fast ocean currents, and the likelihood that blooms, while extant, might not develop on the surface. None of these possibilities can be confirmed at this stage.Fil: Matano, Ricardo P.. State University of Oregon; Estados UnidosFil: Palma, Elbio Daniel. Universidad Nacional del Sur. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; ArgentinaFil: Combes, Vincent. State University of Oregon; Estados Unido

    A Numerical Study of the Magellan Plume

    Get PDF
    In this modeling study we investigate the dynamical mechanisms controlling the spreading of the Magellan Plume, which is a low-salinity tongue that extends along the Patagonian Shelf. Our results indicate that the overall characteristics of the plume (width, depth, spreading rate, etc.) are primarily influenced by tidal forcing, which manifests through tidal mixing and tidal residual currents. Tidal forcing produces a homogenization of the plume’s waters and an offshore displacement of its salinity front. The interaction between tidal and wind-forcing reinforces the downstream and upstream buoyancy transports of the plume. The influence of the Malvinas Current on the Magellan Plume is more dominant north of 50S, where it increases the along-shelf velocities and generates intrusions of saltier waters from the outer shelf, thus causing a reduction of the downstream buoyancy transport. Our experiments also indicate that the northern limit of the Magellan Plume is set by a high salinity discharge from the San Matias Gulf. Sensitivity experiments show that increments of the wind stress cause a decrease of the downstream buoyancy transport and an increase of the upstream buoyancy transport. Variations of the magnitude of the discharge produce substantial modifications in the downstream penetration of the plume and buoyancy transport. The Magellan discharge generates a northeastward current in the middle shelf, a recirculation gyre south of the inlet and a region of weak currents father north.Fil: Palma, Elbio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur; ArgentinaFil: Matano, Ricardo. Oregon State University; Estados Unido

    An idealized study of near equatorial river plumes

    Get PDF
    The dynamics of near equatorial river plumes (NERPs) are investigated using a highly idealized model. The spreading of a NERP from an eastern boundary is characterized by a continuous shedding of westward propagating eddies. This process transfers the bulk of the freshwater discharge to the deep ocean, thus distinguishing NERPs from their midlatitude counterparts. In the long-term limit, a NERP can be rationalized as a β-plume emanating from a coastal source. The evolution of NERPs in an unstratified basin is quite different from that in a stratified one. The spin-up in an unstratified basin is characterized by the formation of an anticyclonic bulge, which spreads westward thus creating a density stratification that favors the subsequent development of smaller and faster moving secondary eddies. The collision of the secondary eddies with the leading bulge arrests the effects of mixing thus allowing the further spreading of the buoyancy anomaly. In a stratified basin, the generation of anticyclonic eddies is accompanied by a concurrent generation of cyclones, which pump saltier waters to the surface hence leading to smaller sea surface salinity (SSS) anomalies. NERPs are sensitive to variations of the freshwater flux (Qfw) and the geomorphological setting. Larger Qfw generates bigger eddies, which spread at a rate proportional to the square root of the normalized flux. Wide shelves allow the interaction of the eddies with the bottom, thus promoting a cyclonic shift of the axis of the eddy train. The inclination of the coast affects the dynamical balance controlling the near-field behavior of NERPs.Fil: Palma, Elbio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur. Departamento de Física; ArgentinaFil: Matano, Ricardo. State University of Oregon; Estados Unido

    The influence of the Brazil and Malvinas Currents on the Southwestern Atlantic Shelf Circulation

    Get PDF
    The oceanic circulation over the southwestern Atlantic shelf is influenced by large tidal amplitudes, substantial freshwater discharges, high wind speeds and – most importantly – by its proximity to two of the largest western boundary currents of the world ocean: the Brazil and Malvinas currents. This review article aims to discriminate the dynamical processes controlling the interaction between this extensive shelf region and the deep-ocean. The discussion is focused on two broad regions: the South Brazil Bight to the north, and Patagonia to the south. The exchanges between the Brazil Current and the South Brazil Bight are characterized by the intermittent development of eddies and meanders of the Brazil Current at the shelfbreak. However, it is argued that this is not the only – nor the most important – influence of the Brazil Current on the shelf. Numerical simulations show that the thermohaline structure of the South Brazil Bight can be entirely ascribed to steady state, bottom boundary layer interactions between the shelf and the Brazil Current. The Malvinas Current does not show the development of eddies and meanders, but its influence on the Patagonian shelf is not less important. Models and observations indicate that the Malvinas Current not only controls the shelfbreak dynamics and cross-shelf exchanges but also influences the circulation in the shelf's interior.Fil: Matano, Ricardo. Oregon State University; Estados UnidosFil: Palma, Elbio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur; ArgentinaFil: Piola, Alberto Ricardo. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval. Centro Arg.de Oceanografía; Argentina. Universidad de Buenos Aires; Argentin

    Características Físicas de Plumas Atrapadas por el Fondo

    Get PDF
    La descarga de estuarios y ríos sobre la plataforma continental forma plumas que transportan aguas menos salinas conjuntamente con sedimentos, nutrientes y materiales antropogénicos. Aunque se ha avanzado considerablemente en el conocimiento de la dinámica de plumas superficiales (confinadas a las capas superiores del océano), aquellas atrapadas por el fondo (que ocupan toda la columna de agua) han recibido mucha menos atención. Debido a que estas últimas son generadas por grandes descargas, su impacto en el ecosistema oceánico es mayor. Este trabajo se propone como objetivo ampliar estudios previos analizando la naturaleza de los procesos físicos básicos asociados a la penetración longitudinal y transversal y al transporte de flotabilidad de plumas de gran escala mediante el empleo de modelos oceánicos implementados en un dominio simplificado. En el mismo se analiza la sensibilidad de esas características ante variaciones ambientales (pendiente de la plataforma, fricción de fondo, difusión lateral). Las características de la pluma difieren fundamentalmente aguas abajo (D) y aguas arriba (U) de la descarga. El transporte de flotabilidad en la región D disminuye considerablemente con el aumento de pendiente, siendo compensado por un incremento correspondiente en la región U. Un incremento de la pendiente retrae la pluma hacia la costa en la región D, mientras que expande la pluma transversalmente a la costa en la zona U. La expansión lateral de la pluma en la superficie se halla controlada mayormente por la fricción de fondo. Los resultados muestran además una marcada dependencia del transporte de flotabilidad con la mezcla lateral para todas las pendientes, siendo mayor el transporte en la región D a medida que disminuye la mezcla.Fil: Sitz, Lina Elisabet. Universidad Nacional del Sur. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Palma, Elbio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur; ArgentinaFil: Matano, Ricardo. State University of Oregon; Estados Unido

    Dynamical analysis of the oceanic circulation in the Gulf of San Jorge, Argentina

    Get PDF
    This study identifies the dynamical mechanisms driving seasonal variations in oceanic circulation and water mass characteristics of the Gulf of San Jorge (GSJ) and its exchanges with the Patagonian Shelf (PS). A suite of process-oriented numerical experiments indicates that GSJ circulation is mainly driven by tidal forcing and modulated by wind forcing and intrusions from the PS. During late spring and summer, stratification decouples the upper and deeper layers of the gulf, leading to a shallow, wind-forced surface circulation and a deeper, density driven, cyclonic geostrophic flow. The subsurface circulation is induced by differential tidal mixing in coastal and deep areas and its intensity is strongly affected by the temporal variability of the atmospheric heat flux, which increases from spring to summer and fades from fall to winter. As stratification weakens, circulation patterns are replaced by wind-driven anticyclonic gyres in the south and an open cyclonic loop in the north. Passive tracer diagnostics show that in summer, surface and subsurface waters from the GSJ northern coast are exported and replaced by waters from the coastal portion of PS currents. The renewal of bottom waters is slower: A small portion upwells in the southwestern coast but most are ventilated by winter convection in the southern region and by intrusions of PS waters in the northern region.Fil: Palma, Elbio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur. Departamento de Física; ArgentinaFil: Matano, Ricardo. State University of Oregon; Estados UnidosFil: Tonini, Mariano Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Centro para el Estudio de Sistemas Marinos; ArgentinaFil: Martos, Patricia. Universidad Nacional de Mar del Plata; Argentina. Instituto Nacional de Investigaciones y Desarrollo Pesquero; ArgentinaFil: Combes, Vincent. State University of Oregon; Estados Unido

    Assessment of larval connectivity in a sandy beach mole crab through a coupled bio-oceanographic model

    Get PDF
    The biophysical mechanisms influencing larval distribution and their impacts on the metapopulation dynamics of sandy beaches, particularly the connectivity patterns associated with larval dispersal, are poorly understood. Here, we identify larval connectivity patterns of the mole crab Emerita brasiliensis in the coast of Uruguay. A biophysical individual based model (IBM) of larval transport was coupled to a regional high-resolution physical model to estimate the monthly and interannual variation of larval connectivity, as well as the impact of the length of the reproductive period on it. Larval connectivity showed marked interannual variations, which were mainly related to interannual changes in seasonal winds and associated ocean circulation patterns, particularly during La Niña years. The southernmost area where E. brasiliensis occurs only received larvae from the nearest release area in November and January spawning events during a strong La Niña year, characterized by intense northeasterly winds. The Uruguayan coast constitutes the leading (poleward) edge of the distribution of E. brasiliensis, where climate change effects are projected to intensify. Extrapolation of these results to a climate change scenario with stronger La Niña events, suggest that larval transport to southernmost beaches will become more probable.Fil: Meerhoff, Erika. Universidad de la República. Facultad de Ciencias; UruguayFil: Defeo Gorospe, Omar. Universidad de la República. Facultad de Ciencias; UruguayFil: Combes, Vincent. State University of Oregon. College of Earth, Ocean and Atmospheric Sciences; Estados UnidosFil: Franco, Barbara Cristie. Instituto Franco-argentino sobre Estudios del Clima y sus Impactos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Matano, Ricardo. State University of Oregon. College of Earth, Ocean and Atmospheric Sciences; Estados UnidosFil: Piola, Alberto Ricardo. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval. Departamento Oceanografía; Argentina. Instituto Franco-argentino sobre Estudios del Clima y sus Impactos; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hernández Vaca, Freddy. Instituto Oceanografico de la Armada; Ecuador. Universidad de Concepción; ChileFil: Celentano, Eleonora. Universidad de la República. Facultad de Ciencias; Urugua
    corecore