112 research outputs found

    Matching the BPS Spectra of Heterotic - Type I - Type I' Strings

    Get PDF
    We give a detailed discussion of the matching of the BPS states of heterotic, type I and type I' theories in d=9 for general backgrounds. This allows us to explicitly identify these (composite) brane states in the type I' theory that lead to gauge symmetry enhancement at critical points in moduli space. An example is the enhancement of SO(16)×SO(16)SO(16)\times SO(16) to E8×E8E_8\times E_8.Comment: 11 pages; minor typos in eq. (3), (4) and on page 9 have been corrected; two footnotes taking into account additional references have been added; version to appear in Physics Letters

    Implications of non-universality of soft terms in supersymmetric grand unified theories

    Get PDF
    Most discussions of supersymmetric grand unified theories assume universality of the soft supersymmetry breaking terms at the grand scale. We point out that the behaviour of these theories might change significantly in the presence of non--universal soft terms. Particularly in SO(10)--like models with a large value of tanβ\beta we observe a decisive change of predictions, allowing the presence of relatively light gauginos as well as small supersymmetric corrections to the b--quark mass. Some results remain rather stable, including the μ\mu--M1/2M_{1/2} correlation. Models with small tanβ\beta seem to be less affected by non--universality which mainly leads to the new possibility of small m0m_{0} (i.e. the squark and slepton soft mass parameter), excluded in the universal case.Comment: 15 pages (Latex) plus 5 figures (uuencoded postscript file). TUM-HEP 201/9

    Predictions for Higgs and SUSY spectra from SO(10) Yukawa Unification with mu > 0

    Get PDF
    We use t,b,τt, b, \tau Yukawa unification to constrain SUSY parameter space. We find a narrow region survives for μ>0\mu > 0 (suggested by \bsgam and the anomalous magnetic moment of the muon) with A01.9m16A_0 \sim - 1.9 m_{16}, m101.4m16m_{10} \sim 1.4 m_{16}, m1612003000m_{16} \sim 1200 -3000 \gev and μ,M1/2100500\mu, M_{1/2} \sim 100 - 500 \gev. Demanding Yukawa unification thus makes definite predictions for Higgs and sparticle masses.Comment: 10 pages, 3 figures, revised version to be published in PR

    Probing EWSB Naturalness in Unified SUSY Models with Dark Matter

    Full text link
    We have studied Electroweak Symmetry Breaking (EWSB) fine-tuning in the context of two unified Supersymmetry scenarios: the Constrained Minimal Supersymmetric Model (CMSSM) and models with Non-Universal Higgs Masses (NUHM), in light of current and upcoming direct detection dark matter experiments. We consider both those models that satisfy a one-sided bound on the relic density of neutralinos, Ωχh2<0.12\Omega_{\chi} h^2 < 0.12, and also the subset that satisfy the two-sided bound in which the relic density is within the 2 sigma best fit of WMAP7 + BAO + H0 data. We find that current direct detection searches for dark matter probe the least fine-tuned regions of parameter-space, or equivalently those of lowest Higgs mass parameter μ\mu, and will tend to probe progressively more and more fine-tuned models, though the trend is more pronounced in the CMSSM than in the NUHM. Additionally, we examine several subsets of model points, categorized by common mass hierarchies; M_{\chi_0} \sim M_{\chi^\pm}, M_{\chi_0} \sim M_{\stau}, M_{\chi_0} \sim M_{\stop_1}, the light and heavy Higgs poles, and any additional models classified as "other"; the relevance of these mass hierarchies is their connection to the preferred neutralino annihilation channel that determines the relic abundance. For each of these subsets of models we investigated the degree of fine-tuning and discoverability in current and next generation direct detection experiments.Comment: 26 pages, 10 figures. v2: references added. v3: matches published versio

    5d quivers and their AdS(6) duals

    Get PDF
    We consider an infinite class of 5d supersymmetric gauge theories involving products of symplectic and unitary groups that arise from D4-branes at orbifold singularities in Type I' string theory. The theories are argued to be dual to warped AdS(6)x S4/Zn backgrounds in massive Type IIA supergravity. In particular, this demonstrates the existence of supersymmetric 5d fixed points of quiver type. We analyze the spectrum of gauge fields and charged states in the supergravity dual, and find a precise agreement with the symmetries and charged operators in the quiver theories. We also comment on other brane objects in the supergravity dual and their interpretation in the field theories.Comment: 29 pages, 15 figure

    Sparticle Mass Spectra from SO(10) Grand Unified Models with Yukawa Coupling Unification

    Full text link
    We examine the spectrum of superparticles obtained from the minimal SO(10) grand unified model, where it is assumed the gauge symmetry breaking yields the Minimal Supersymmetric Standard Model (MSSM) as the effective theory at MGUT2×1016M_{GUT}\sim 2\times 10^{16} GeV. In this model, unification of Yukawa couplings implies a value of tanβ4555\tan\beta\sim 45-55. At such high values of tanβ\tan\beta, assuming universality of scalar masses, the usual mechanism of radiative electroweak symmetry breaking breaks down. We show that a set of weak scale sparticle masses consistent with radiative electroweak symmetry breaking can be generated by imposing non-universal GUT scale scalar masses consistent with universality within SO(10) plus extra DD-term contributions associated with the reduction in rank of the gauge symmetry group when SO(10) spontaneously breaks to SU(3)×SU(2)×U(1)SU(3)\times SU(2)\times U(1). We comment upon the consequences of the sparticle mass spectrum for collider searches for supersymmetry. One implication of SO(10) unification is that the light bottom squark can be by far the lightest of the squarks. This motivates a dedicated search for bottom squark pair production at ppˉp\bar{p} and e+ee^+e^- colliders.Comment: 12 page REVTEX file including 3 PS figures; revised manuscript includes minor changes to coincide with published versio

    Compatibility of the new DAMA/NaI data on an annual modulation effect in WIMP direct search with a relic neutralino in supergravity schemes

    Get PDF
    Recent results of the DAMA/NaI experiment for WIMP direct detection point to a possible annual modulation effect in the detection rate. We show that these results, when interpreted in terms of a relic neutralino, are compatible with supergravity models. Together with the universal SUGRA scheme, we also consider SUGRA models where the unification condition in the Higgs mass parameters at GUT scale is relaxed.Comment: 10 pages, ReVTeX, 13 figures (included as PS files

    Non-Universal Soft SUSY Breaking and Dark Matter

    Get PDF
    An analysis is given of the effects of non-universal soft SUSY breaking masses in the Higgs sector and in the third generation squark sector, and it is shown that they are highly coupled. Analytic expressions are obtained for their effects on the parameters μ,mA\mu,m_A and on the third generation squark masses. Non-universality effects on dark matter event rates in neutralino-nucleus scattering are analysed. It is found that the effects are maximal in the range mχ~165m_{\tilde\chi_1}\leq 65~GeV where the relic density is governed by the Z and Higgs poles. In this range the minimum event rates can be increased or decreased by factors of O(10) depending on the sign of non-universality. Above this range Landau pole effects arising from the heavy top mass tend to suppress the non-universality effects. The effect of more precise measurements of cosmological parameters on event rates, which is expected to occur in the next round of COBE like sattelite experiments, is also investigated. Implications for the analysis for dark matter searches are discussed.Comment: 28 pages, latex, and 7 fig

    Extended Tree-Level Gauge Mediation

    Get PDF
    Tree-level gauge mediation (TGM) is a scenario of SUSY breaking in which the tree-level exchange of heavy (possibly GUT) vector fields generates flavor-universal sfermion masses. In this work we extend this framework to the case of E_6 that is the natural extension of the minimal case studied so far. Despite the number of possible E_6 subgroups containing G_SM is large (we list all rank 6 subgroups), there are only three different cases corresponding to the number of vector messengers. As a robust prediction we find that sfermion masses are SU(5) invariant at the GUT scale, even if the gauge group does not contain SU(5). If SUSY breaking is mediated purely by the U(1) generator that commutes with SO(10) we obtain universal sfermion masses and thus can derive the CMSSM boundary conditions in a novel scenario.Comment: 22 pages, 2 figures, 3 table

    Yukawa Unification as a Window into the Soft Supersymmetry Breaking Lagrangian

    Get PDF
    We study Yukawa unification, including the effects of a physical neutrino mass consistent with the Superkamiokande observations, in a string/DD-brane inspired Pati-Salam model which allows the most general non-universal scalar and gaugino masses, including the usual DD-term contributions which arise in SO(10). We investigate how the tight constraints from rare decays such as bsγb \to s \gamma and τμγ\tau \to \mu \gamma can provide information about the family dependent supersymmetry breaking soft Lagrangian, for example the trilinears associated with the second and third family. Many of our results also apply to SO(10) to which the model approximately reduces in a limiting case. In both models we find that Yukawa unification is perfectly viable providing the non-universal soft masses have particular patterns. In this sense Yukawa unification acts as a window into the soft supersymmetry breaking Lagrangian.Comment: References added. 82 pages, 57 figures, Late
    corecore