9 research outputs found

    Relationships between soil water repellency and microbial community composition under different plant species in a Mediterranean semiarid forest

    Get PDF
    Soil water repellency (SWR) can influence many hydrological soil properties, including water infiltration, uneven moisture distribution or water retention. In the current study we investigated how variable SWR persistence in the field is related to the soil microbial community under different plant species (P. halepensis, Q. rotundifolia, C. albidus and R. officinalis) in a Mediterranean forest. The soil microbial community was determined through phospholipid fatty acids (PLFA). The relationships between microbiological community structure and the soil properties pH, Glomalin Related Soil Protein (GRSP) and soil organic matter (SOM) content were also studied. Different statistical analyses were used: Principal Component Analysis (PCA), ANOVA, Redundancy Analysis and Pearson correlations. The highest concentrations of PLFA were found in the most water repellent samples. PCA showed that microorganism composition was more dependent of the severity of SWR than the type of plant species. In the Redundancy Analysis, SWR was the only significant factor (p<0.05) to explain PLFA distributions. The only PLFA biomarkers directly related to SWR were associated with Actinobacteria (10Me16:0, 10Me17:0 and 10Me18:0). All the results suggest that a strong dependence between SWR and microbial community composition.Ministerio de Ciencia e InnovaciĂłn CGL2010-21670-C02-0

    Estudio de métodos cromatográficos y espectofotométricos en el análisis de citroflavonoides / Jorge Juan Mataix Beneyto ; director Octavio Carpena Artés.

    No full text
    Tesis-Universidad de Murcia.Consulte la tesis en: BCA. GENERAL. ARCHIVO UNIVERSITARIO. T.M.-99.CRAI CIENCIAS. DEPOSITO. TD 24

    Biological and chemical factors controlling the patchy distribution of soil water repellency among plant species in a Mediterranean semiarid forest

    Get PDF
    Natural soil water repellency is a property that has already been observed in forest soils and is characterized by its patchy distribution. There are many factors involved in its development. In this work, we have studied a large number of chemical and biological factors under the influence of different plant species (. Pinus halepensis, Quercus rotundifolia, Cistus albidus and Rosmarinus officinalis) to learn which has the greatest responsibility for its presence and persistence in the top-soil layer. We observed strong and significant correlations between ergosterol, glomalin related soil protein (GRSP), extractable lipids, soil organic matter (SOM) content and water repellency (WR). Our results suggested lipid fraction as the principal factor. Moreover, apart from Pinus, fungal biomass seems to be also related to the SOM content. Soil WR found under Pinus appears to be the most influenced by fungi. Quality of SOM, to be precise, lipid fraction could be responsible for WR and its relationship with fungal activity.Peer Reviewe

    Effect of solid waste compost on microbiological and physical properties of a burnt forest soil in field experiments

    No full text
    5 pages, 4 tables.The restoration of soil microbial activities is a basic step in the reclamation of burnt soils. For this reason, the ability of municipal solid waste compost to accelerate the re-establishment of bacterial and fungal populations, as well as to re-establish physical properties in a burnt soil, was evaluated in a field experiment. Four treatments were performed by adding different doses of compost (0, 0.5, 1 and 2 kg compost m–2 soil) to a burnt Calcic Rodoxeralf soil, and the changes in microbial populations, salt content, aggregate stability and bulk density were evaluated for 1 year. Initially, the addition of compost had a negative effect on soil microbial populations, but 3 months after compost addition, the number of viable fungal propagules increased in all the amended soils. This positive effect lasted until the end of the experiment. From 30 days onwards, all the amended soils showed a greater total number of bacterial cell forming units than the unamended burnt soil. Organic amendment increased the percentage of 2- to 4-mm aggregates, although the effect on the stability of the 0.2- to 2-mm aggregates and on bulk density was less noticeable.Peer reviewe

    Reclamation of a burned forest soil with municipal waste compost: macronutrient dynamic and improved vegetation cover recovery

    No full text
    7 pages, 3 tables, 6 figures.The reclamation of burned soils in Mediterranean environments is of paramount importance in order to increase the levels of soil protection and minimise erosion and soil loss. The changes produced in the content of total organic carbon (TOC), N (Kjeldahl) and available P, K, Ca and Mg by the addition of different doses of a municipal solid waste compost to a burned soil were evaluated during one year. The effect of organic amendment on the improvement in the vegetation cover after one year was also evaluated. The organic amendment, particularly at a high dose, increased the TOC and N-Kjeldahl content of the soil in a closely related way. The levels of available K in soil were also enhanced by the organic amendment. Although the effects on all three parameters tended to decrease with time, their values in the amended soils were higher than in the control soil, which clearly indicates the improvement in the chemical quality of the soil brought about by the organic amendment. The available P content did not seem to be influenced by organic treatment, while available Mg levels were higher than in the control during the first 4 months following organic amendment. The application of compost to the burned soil improved its fertility and favoured rapid vegetal recovery, thus minimising the risk of soil erosion.Peer reviewe

    Plant species influence on soil microbial short-term response after fire simulation

    No full text
    Plant species can influence fire intensity and severity causing different immediate and long-term responses on the soil microbial community. The main objective of this work was to determine the role of two representative Mediterranean plant species as soil organic matter sources, and to identify their influence on microbial response before and after heat exposure. A laboratory heating experiment (300 A degrees C for 20 min) was performed using soil collected under Pinus hallepensis (PIN) and Quercus coccifera (KER). Dried plant material was added before heating for a total of six different treatments: non-heated control samples amended with the original plant material (PIN0 and KER0); PIN samples heated with pine (PINp) or kermes oak litter (PINk); KER samples heated with kermes oak (KERk) or pine litter (KERp). Heated soils were inoculated with the original fresh soil and different microbial parameters related to abundance, activity and possible changes in microbial community composition and chemical soil parameters that could be conditioning microbial response were measured for 28 days after inoculation. The effect of heating on the soil microbial parameters studied was influenced to a small extent by the plant species providing fuel, being evident in soil samples taken under pine influence. Nevertheless heating effect showed marked differences when plant species influence on soil origin was analyzed. In general, samples taken under pine appear to be more negatively affected by heating treatment than samples collected under kermes oak, highlighting the importance of vegetation as a fresh organic matter source in soil ecosystems before and after fire

    The effect of calcium on the antioxidant enzymes from salt-treated loquat and anger plants

    Get PDF
    Salt treatment (50 mM NaCl) reduced plant growth of loquat (Eribotria japonica Lindl.) (by up to 40%) but not that of anger (Cydonia oblonga Mill.). Salt stress induced a strong leaf Na+ accumulation in both species. However, the observed increase in leaf Cl– level was higher in loquat (13-fold) than in anger plants (3.8-fold). Addition of Ca2+ (25 mM) significantly reduced Na+ and Cl– concentrations in both salt-treated species. In anger leaves, calcium addition to the nutrient media did not change the leaf calcium contents in salt-treated or untreated plants, this value being lower in salt-treated plants. However, in loquat plants, an increase in leaf Ca2+ was observed after the calcium addition. Surprisingly, an increase in Ca2+ concentration was also observed in salt-treated loquat plants. In general, anger plants had higher constitutive antioxidant enzyme levels in both control and salt-treated plants. Salt stress did not change antioxidant enzyme levels in loquat plants. A similar effect was observed in anger plants, but in this case a 2-fold induction of monodehydroascorbate reductase (MDHAR) activity was observed. In both species, salinity produced an oxidative stress, indicated by an increase in lipid peroxidation, this value being much higher in loquat (83%) than in anger (40%) plants. In salt-treated plants, Ca2+ addition provided some protection to the membranes, because the increases observed in thiobarbituric-acid-reactive substances (TBARS) were not significant. In contrast, in control plants Ca2+ treatments increased glutathione reductase (GR) and decreased catalase activity in anger, but increased MDHAR, dehydroascorbate reductase (DHAR), GR and superoxide dismutase (SOD) in loquat plants. In salt-treated plants, Ca2+ additions decreased catalase (CAT) and ascorbate peroxidase (APX) for anger and raised DHAR, GR and SOD for loquat. However, the mechanism by which Ca2+ regulates antioxidant enzymes remains to be determined. These results suggest that anger plants have a higher capacity to scavenge AOS, both under saline and non-saline conditions. Accordingly, and related to the smaller Cl– increase observed, anger plants are more salt-tolerant, at least partly owing to the higher antioxidant enzyme levels observed.Authors thank Dr. David J. Walker for his valuable review of this manuscript and for correction of the English, and are grateful to the Miguel Hernández University, Bancaja and Proaguas for the financial support.Peer reviewe

    Influence of water salinity on growth and water relations of loquat plants grafted on two rootstocks

    No full text
    En: IV International Symposium on Irrigation of Horticultural CropsThe experiment was performed on two-year-old loquat “Algerie” trees (Eriobotrya japonica Lindl.) grafted on Franco and Anger rootstocks, growing in a glasshouse under partially controlled conditions. Trees were submitted to five saline treatments for 5 months: 5 (control), 25, 35, 50 and 70 mM NaCl in nutrient solutions. At the end of the experiment, plant biomass, leaf Na and Cl concentrations, photosynthesis rate and various water relations parameters from both scion-rootstock combinations were measured and evaluated. The total dry weight of loquat plants on Anger rootstock was unaffected by salinity, whereas those grafted on Franco, a significant reduction in total dry weight was noted. Loquat trees grafted onto Franco treated with 50mM and 70mM NaCl caused a substantial degree of defoliation and foliar necrosis. Plants grafted onto Anger showed lower Na+ concentrations in leaves than those grafted onto Franco, demonstrating that it is an efficient Na+ excluder. Under low salinity levels the accumulation of Cl- in both rootstock-scion combinations was similar. Sodium had a more adverse effect than chloride on the dry weight. The reduction in photosynthesis level was more marked on plants grafted on Franco. Lower leaf water potential values were observed in plants grafted on Franco than those grafted on Anger at moderate salinity levels. Osmotic adjustment permitted the maintenance of leaf turgor in treated plants grafted on Anger, but did not prevent a decrease in leaf turgor in Franco.Peer reviewe
    corecore