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ABSTRACT 

Salt treatment (50 mM NaCl) reduced plant growth of loquat (Eribotria japonica 

Lindl.) (by to 40%) but not of anger (Cydonia oblonga Mill.). Salt stress induced a strong leaf 

Na+ accumulation in both species. However, the increase observed in leaf Cl- level was higher 

in loquat (13-fold) than in anger plants (3.8-fold). Ca2+ addition (25 mM) significantly 

reduced Na+ and Cl- concentrations in both salt-treated species. In anger leaves, calcium 

addition to the nutrient media did not change the leaf calcium contents in salt-treated or 

untreated plants, this value being lower in salt-treated plants. However, in loquat plants, an 

increase in leaf Ca2+ was observed for the calcium addition. Surprisingly, an increase in Ca2+ 

concentration was also observed in salt-treated loquat plants. In general, anger plants had 

higher constitutive antioxidant enzyme levels in both control and salt-treated plants. Salt 

stress did not change antioxidant enzyme levels in loquat plants. A similar effect was 

observed in anger plants, but in this case an induction of MDHAR activity was observed (2-

fold). 

In both species, salinity produced an oxidative stress, indicated by an increase in lipid 

peroxidation, this value being much higher in loquat (83%) than in anger (40%) plants. In 

salt-treated plants, Ca2+ addition produced some protection to the membranes, because the 

increases observed in TBARS were not significant. 
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On the other hand, in control plants, Ca2+ treatments increased GR and decreased 

catalase activity for anger, but increased MDHAR, DHAR, GR and SOD in loquat plants. In 

salt-treated plants, Ca2+ additions decreased CAT and APX for anger and raised DHAR, GR 

and SOD for loquat. However, the mechanism by which Ca2+ could regulate antioxidant 

enzymes remains to be determined. 

These results suggest that anger plants have a higher capacity to scavenge AOS, both 

under control and salinity conditions. Accordingly, and related to the smaller Cl- increase 

observed, anger plants are more salt tolerant, at least partly, due to the higher antioxidant 

enzyme levels observed. 

 

Keywords:antioxidant enzymes, Calcium, Cydonia oblonga Mill., Eribotria japonica Lindl, 

salt stress, oxidative stress.  

Abbreviattions: AOS, activated oxygen species; ASC-GSH cycle, ascorbate-glutathione 

cycle; APX, ascorbate peroxidase; CAT, catalase; DHAR, dehydroascorbate reductase; GR,; 

glutathione reductase; MDHAR, monodehydroascorbate reductase; SOD superoxide 

dismutase; TBARS, thiobarbituric acid-reactive substances. 

 

Introduction 

Salinity is one of the major limiting environmental factors in crop production. Under 

salt stress, plants have to cope with water stress imposed by the low external water potential 

and with ion toxicity due to accumulation inside the plants (Bohnert and Jensen 1996). In 

addition to its known components of osmotic stress and ion toxicity, salt stress is also 

manifested as an oxidative stress, all of which contribute to its deleterious effects (Gueta-

Dahan et al. 1997; Hernández et al. 2001; Rios-Gonzalez et al. 2002). 

The effects of various environmental stresses in plants are known to be mediated, at 

least partially, by an enhanced generation of activated oxygen species (AOS) such as 
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superoxide (O2
.-), hydrogen peroxide (H2O2), and hydroxyl radicals (.OH) (Alscher et al. 

1997; Shalata and Tal 1998; Hernández et al. 2001; Vitória et al. 2001; Able et al. 2003). 

Plants contain a complex antioxidant system to detoxify AOS that includes carotenoids, 

ascorbate, glutathione, tocopherols and anthocyanin pigments (Neill et al. 2002; Del Río et al. 

2002), and enzymes such as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 

1.11.1.6), glutathione peroxidase (GPX, EC 1.11.1.9), peroxidases, and the enzymes involved in 

the ascorbate-glutathione cycle (ASC-GSH cycle; Foyer and Halliwell 1976): ascorbate 

peroxidase (APX, EC 1.11.1.1), dehydroascorbate reductase (DHAR, EC 1.8.5.1), 

monodehydroascorbate reductase (MDHAR, EC 1.6.5.4) and glutathione reductase (GR, EC 

1.6.4.2). The components of this antioxidant defence system can be found in different subcellular 

compartments (Jiménez et al. 1997). 

Salinity impairs the uptake of Ca2+ ions by plants, either due to ionic interactions and 

reduction of their activity in the soil solution and therefore their availability to the plant (Cramer 

et al. 1986; Suárez and Grieve 1988) or possibly by displacing it from the cell membranes or in 

some way affecting membrane function (Lynch et al. 1987; Läuchli 1990). It is known that the 

addition of Ca2+ ameliorates the adverse effects of salinity on plants (Cramer et al. 1986; 

Martínez-Ballesta et al., 2000). However it has been reported that Ca2+ addition has no effects on 

the salt tolerance of some lettuce genotypes (Cramer and Spurr 1986), and in blueberry plants 

treated with high NaCl levels, high Ca2+ concentrations are even harmful (Wright et al. 1995). 

Several studies have shown that Ca2+ is involved in the regulation of plant responses to 

various environmental stresses, including heat (Jiang and Huang 2001), salt, and drought stress 

(Knight et al. 1997; Liu and Zhu 1998). 

Loquat plants (Eribotria japonica Lindl.) are widely grown in the Marina Baja region 

(Alicante, Spain), where the climatic conditions are suitable for their growth. Loquat plants 

are normally grafted on franco stock, which exhibits a great development and longevity 

(Vidal 1989). However, loquat plants grafted on Anger stock (Cydonia oblonga Mill.) 
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produce trees of short height, showing little tendency for vertical development, these being 

important characteristics which permit low production costs (Burló-Carbonell et al. 1997). 

In this work, we studied the effect of salt stress and calcium treatments on the 

antioxidant systems in leaves of loquat and anger plants, used as rootstock for loquat plants 

under field contitions. For this,l we analysed plant growth, Na+, Cl-, and Ca2+ levels as well as 

CAT, SOD and the ASC-GSH cycle enzymes and the extent of lipid peroxidation. 

 

Material and Methods 

Plant material and treatments 

Loquat (40 plants) and anger (40 plants) plants were grown for two years in 12-L 

plastic containers filled with siliceous sand. Groups of 10 uniform plants of each rootstock 

were used for each treatment. The plants were irrigated generously three times per week to 

ensure the flow through the pots, and to avoid excessive accumulation of salt in the growing 

medium. The nutrient solution had the following composition: 3 mM KNO3, 4 mM Ca(NO3)2, 

2 mM H3PO4, 2 mM MgSO4, 5 mM NaCl, 9.25 µM H3BO3, 35.8 µM Fe-EDDHA, 1.8 µM 

MnSO4, 1.35 µM ZnSO4, 0.79 µM CuSO4 and 0.21 µM (NH4)6MO7O24, pH 5.8. After six 

months of acclimation, treatments were begun by adding NaCl and calcium acetate until the 

required concentrations were reached (NaCl mM + Ca2+ mM): 5 + 5 (control plants); 5+25 

(control/high calcium plants); 50+5 (salt-treated plants), and 50+25 (NaCl/highCa2+ plants), 

respectively. The control water used in our study is that of the best quality usually used by 

farmers, and it contains about 5 mM NaCl and 5 mM calcium salts. We think that this reflects 

better the real situations that occurrs in our region under field conditions. Ca2+ addition as 

calcium acetate has been used successfully by Bañuls et al. (1991). In order to avoid an 

osmotic shock, NaCl and calcium acetate were added gradually over 5 days.  

The plants were grown in a greenhouse with partially-controlled conditions. 

Temperature was maintained between 13 and 32ºC and relative humidity was always kept 
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over 55%. The plants were treated for four months, and at the end of this period, the plants 

were removed from their pots and the fresh and the dry weight were determined. 

Mineral content 

 Ten plants from each rootstock were harvested at the end of the experimental period. The 

leaves of each plant were washed with distilled water, dried at 65oC, ground, and stored at room 

temperature for inorganic solute analyses. Cl- contents were analysed in the aqueous extracts by 

potentiometric titration with AgNO3 (0.01N) in an automatic Metrohm 702 SM Titrino. Na+ 

contents were determined in a HNO3:HClO4 (2:1,v/v) digestion extract by flame photometry 

(Jenway Ltd. PFP7) and Ca2+ by atomic absorption spectrophotometry (Unicam Solaar 969). 

Leaf enzyme extraction 

 All operations were performed at 4ºC. Leaves (2 g) were homogenized with a mortar and 

pestle in 4 mL of ice-cold 50 mM Tris-HCl buffer (pH 6.5), containing 0.1 mM EDTA 8 mM 

cysteine, 2% (w/v) PVPP, 0.1 mM PMSF, and 0.2% (v/v) Triton X-100. For APX activity, 20 

mM sodium ascorbate was added. The homogenate was centrifuged at 14000 g for 20 min and 

the supernatant fraction was filtered through Sephadex G-25 NAP columns (Amersham 

Pharmacia Biotech AB, Uppsala, Sweden), equilibrated with the same buffer used for the 

homogenization, with or without 5 mM sodium ascorbate. 

Enzymatic determinations 

 APX, DHAR, MDHAR, and GR activities were assayed according to previously 

published protocols, as described by Hernández et al. (2001). Enzyme activities were 

corrected for non-enzymatic rates and for interfering oxidations (Jiménez et al. 1997). APX 

was measured in the presence and absence of the specific inhibitor p-chloromercuryphenyl 

sulfonic acid (pCMPS) (0.5 mM). pCMPS-sensitive ascorbate peroxidase activity was 

considered as being due to class I ascorbate peroxidase (EC 1.11.1.11). 

 Catalase and total SOD activity were assayed as described in Hernández et al. (2001) 
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Assays 

 The extent of lipid peroxidation was estimated by determining the concentration of 

thiobarbituric acid-reactive substances (TBARS). The leaf samples were immediately frozen in 

liquid nitrogen. Leaf material (200 mg) was homogenized in 2 mL of 0.1% TCA solution. The 

homogenate was centrifuged at 15000 g for 10 min and 0.5 ml of the supernatant obtained was 

added to 1.5 mL 0.5% TBA in 20% TCA. The mixture was incubated at 90º C in a water bath for 

20 min, and the reaction was stopped by placing the reaction tubes in an ice-water bath. Then, 

the samples were centrifuged at 10000 g for 5 min, and the absorbance of the supernatant was 

read at 532 nm. The value for non-specific absorption at 600 nm was subtracted (Cakmak and 

Horst 1991). The amount of TBARS (red pigment) was calculated from the extinction coefficient 

155 mM-1 cm-1 (Cakmak and Horst 1991). 

 Protein was estimated according to Bradford (1976). 

 

Statistical analysis 

 Comparisons among means were made using the Least Significant Difference (LSD) 

test, calculated at P<0.05. Statistical procedures were carried out with the software package 

SPSS 10.0 for Windows. 

 

Results 

Growth inhibition of 40% was observed in loquat plants submitted to 50 mM NaCl, 

whereas no significant effects could be observed in salt-treated anger plants (Fig. 1). The 

addition of 25 mM calcium to the nutrient media did not improve the growth of salt-treated 

loquat plants under our experimental conditions. 

The leaf Na+ concentration was increased dramatically in both salt-treated plants 

species (nearly 5-fold) (Fig. 2a). However, the increase observed in leaf Cl- levels was higher 
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in loquat (13-fold) than in anger plants (3.8-fold) (Fig. 2b). Ca2+ addition (25 mM) 

significantly reduced Na+ and Cl- concentrations in both salt-treated plant species.  

In relation to Ca2+ levels, a different behavior was produced. In anger leaves, the 

addition of calcium acetate to the nutrient media did not change the leaf Ca2+ contents in salt-

treated or untreated plants, values being lower in salt treated-plants (Fig. 2c). However, in 

loquat plants, an increase in leaf Ca2+ was observed after the addition of calcium to the 

nutrient media (Fig. 2c). Surprisingly, an increase in Ca2+ concentration was also observed in 

salt-treated loquat plants (Fig. 2c). 

In general, anger plants had higher constitutive antioxidant enzyme levels in both 

control and salt-treated plants. Under control conditions, the CAT level, was 3.7-fold higher 

in anger than in loquat plants (Fig. 3a). A differential behavior was observed in Ca2+-treated 

plants depending on the plant species. Calcium produced a significant decrease in CAT 

activity from anger plants, whereas in loquat a 65% increase was observed. However, no 

changes were observed under saline conditions, in either anger or loquat plants (Fig. 3a). 

The constitutive APX levels were nearly 7-fold higher in anger than in loquat plants 

(Fig. 3b). Unlike CAT, APX levels were unchanged by 25 mM Ca2+ addition. Salt stress did 

not change APX activity, neither in loquat nor in anger plants, although, in this case, APX 

levels in anger were 3.7-fold higher than in loquat plants. On the other hand, under salt stress 

conditions, Ca2+ addition produced a decrease in APX activity from anger plants, but under 

these conditions activity values were 3.3-fold higher in anger than in loquat plants (Fig. 3b).  

In the absence of salt, calcium treatment increased MDHAR only in loquat plants (Fig. 

4a). Salt stress raised this activity only in anger plants (2-fold), whereas no changes were 

observed with Ca2+ treatments under saline conditions, neither in Anger nor in loquat plants 

(Fig. 4a). 
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 No changes were observed in DHAR activity in anger plants due to salt and/or Ca2+ 

additions. However, Ca2+ treatment (25 mM) raised DHAR in loquat plants, both in the 

presence and absence of salt (Fig. 4b). 

The constitutive levels of GR activity were 5.3-fold higher in anger than in loquat 

plants. In both species, Ca2+ increased GR activity, although this increase was higher in loquat 

(3.7-fold) (Fig. 5a). Under salt stress conditions GR increased only in loquat, although in 

these conditions, the activity levels were 2-fold higher in anger plants (Fig. 5a). GR activity 

was unchanged by Ca2+ addition in salt-treated anger plants. However, Ca2+ raised this 

activity in loquat plants, both in the absence and presence of salt, but the activity levels were 

lower than those exhibited by anger plants. 

Constitutive SOD activity levels were 2-fold higher in anger than in loquat (Fig. 5b). 

In anger leaves, SOD activity was not changed by Ca2+ and/or NaCl addition. However, in 

loquat leaves, 25 mM Ca2+ increased it nearly 4-fold and 2.6-fold in the absence and presence 

of NaCl, respectively. In loquat plants treated only with NaCl, no significant change in SOD 

was observed. However, in NaCl/high Ca2+ loquat plants the SOD activity was 40% higher 

than that showed by Anger plants (Fig. 5b). 

In both species, salt stress produced an oxidative stress, indicated by the increase in 

lipid peroxidation (measured as TBARS), indicating damage to membranes due to salt stress, 

this value being much higher in loquat (83%) than in Anger (40%), in relation to control 

plants (Fig. 6). In salt-treated plants, Ca2+ addition produced some protection to the 

membranes, because the increases observed in TBARS were not significant. 

 

Discussion 

Under saline conditions, plant growth is generally reduced, although it is known that 

the degree of growth inhibition by salinity may differ between species and between cultivars 
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within a species (Hernández et al. 1995; Shannon and Grieve 1999), and even between scion-

rootstock combinations (Nieves et al. 1991). 

The results for nutrient uptake suggest that anger leaves had a higher capacity to 

compartment toxic ions in vacuoles, or that the problem was osmotic rather than toxic, or both 

at the same time. Ca2+ addition (25 mM) produced a lower absorption and/or transport of Na+ 

and Cl- to the leaf in both species. A similar effect has been observed in other plant species 

(Maas and Grieve 1987; Bañuls et al. 1991). It could be that an anionic competition between 

Cl- and CH3COO- occurred. However, it has been reported that the Cl- decrease is due to a 

Ca2+ effect and not a CH3COO- effect, and that calcium probably also plays a regulatory role 

in membrane permeability to Cl- (Bañuls et al. 1991). However, the Ca2+ addition did not 

overcome the adverse effects of NaCl on loquat growth. This effect could be attributed to the 

following possible reasons: 1.- The fact that our control nutrient solution had a sufficient Ca2+ 

concentration such that the maximum beneficial effects had been manifested already, and a 

higher Ca2+ addition, although it decreased the leaf Na+ levels, was not able to improve plant 

growth. 2.- The effect on plant growth could be attributed to an osmotic stress, in agreement 

with other authors (Reid and Smith 2000). However, Bañuls et al. (1991) reported that Ca2+ 

addition also neutralized the decrease in leaf water and osmotic potentials induced by salinity. 

3.- The plant genotype, since Ca2+ addition improved plant growth in tomato, cucumber, 

melon and Citrus (Bañuls et al. 1991; Al-Harbi, 1995; Martínez-Ballesta et al. 2000), but no 

beneficial effects on growth have been described in several lettuce and wheat genotypes 

(Cramer and Spurr 1986; Weimberg 1988), in agreement with our results for loquat plants. 

The decrease in leaf Ca2+ levels in salt-treated anger plants could be explained by a 

decrease in Ca2+ activity in the nutrient solution (Cramer et al. 1986; Suárez and Grieve 1988), 

and possibly by its displacement from the cell membranes or by an effect on membrane function 

(Lynch et al. 1987; Läuchli 1990). However, the increase in leaf Ca2+ observed in salt-treated 
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loquat plants is more difficult to explain, but this result has been corroborated recently in other 

experiments obtained in loquat plants grafted on the same franco stock (unpublished results). 

In the present work, we used four-month treated plants because in the short-term no 

obvious physiological changes were observed. After two months of the treatments no changes 

in plant growth were observed. On the other hand, we carried out a longer-term experiment to 

know which plant was more salt-tolerant. Once this was established, we wanted to study the 

effect of salt stress on the antioxidant enzymes levels in both plant species. The antioxidant 

enzyme responses and AOS generation for long-term salt treatment have been measured also 

in pea, Citrus and Lycopersicon pennellii plants (Hernández et al. 1993, 1995, 2000, 2001, 

Almansa et al. 2002; Mittova et al. 2003). 

Contradictory results were obtained by different authors in relation to the effect of salt 

on the activity and protein levels of the various antioxidant enzymes. Some authors have 

attributed salt tolerance to higher constitutive levels of some antioxidant enzymes (Gueta-

Dahan et al. 1997; Shalata and Tal 1998; Comba et al. 1998; Tsugane et al. 1999). However, 

others authors have found that, rather than the constitutive levels, the coordinated up-

regulation of the activities of antioxidative enzymes seems to be one of the mechanisms 

involved in the salt-tolerance response (Hernández et al. 1993, 1995, 2000, 2001; Olmos et al. 

1994; Piqueras et al. 1996; Gómez et al. 1999; Mittova et al. 2003). Moreover, in this activity 

response, the importance of the cellular compartment in which the specific antioxidative 

enzyme(s) is (are) located has been described (Hernández et al. 1993, 1995, 2001; Bueno et 

al. 1998; Gómez et al. 1999; Mittova et al. 2003). 

Lycopersicon pennellii L. plants, tolerant to 100 mM NaCl, had SOD, APX, and 

DHAR activity levels inherently higher than L. esculentum L. plants, a salt-sensitive species 

(Shalata and Tal 1998). Under salinity, APX, CAT, and SOD activity levels were also higher 

in L. pennellii than in L. esculentum. These results suggest that the wild, salt-tolerant L. 

pennellii plants are better protected against AOS, inherently and under salt stress conditions, 
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than the relatively sensitive L. esculentum plants. In pst1 Arabidopsis mutant plants, tolerance 

to salt stress was correlated with higher SOD and APX activity levels (Tsugane et al. 1999). 

Our results agree with those described by other authors, who suggested that salt tolerance is 

due, at least partially, to higher constitutive antioxidant enzyme activities (Gueta-Dahan et al. 

1997; Shalata and Tal. 1998; Tsugane et al. 1999). In agreement with these authors, one of the 

reasons why anger plants are more salt-tolerant than loquat plants could be their higher 

antioxidant enzyme levels, both under control and saline conditions, suggesting that these 

plants have a higher capacity to scavenge AOS, both in control and salt stress conditions, a 

situation in which the AOS production is stimulated, increasing the risk of oxidative damage 

(Hernández et al. 1993, 1995, 2001).  

Lipid peroxidation is the symptom most easily ascribed to oxidative damage and it is 

often used as an indicator of oxidative damage (Hernández and Almansa 2002; Hernández et 

al. 1995, 2001, 2002; Gómez et al. 1999). In the present work, the lower TBARS increases 

observed in salt-treated anger plants could be due, at least partly, to the higher antioxidant 

enzyme levels found under these conditions. 

Most studies on the effect of salt stress on the activity of antioxidant enzymes have 

been carried out in herbaceous plants or in cell cultures. However, the studies carried out in 

woody plants are more scarce. In salt-sensitive Quercus robur L. plants, salt stress produced 

an increase in SOD activity, whereas no changes could be observed in APX and GR activities 

(Sehmer et al. 1995). These authors suggested that an increase in SOD and the lack of APX 

induction might have increased H2O2 levels. So, the deleterious effects observed in salt-

stressed Q. robur plants could be due not only to ion toxicity but also to an increase in the 

levels of H2O2 and derivative species in whole cells (Sehmer et al. 1995). 

By using different rootstock-scion combinations in lemon trees, a correlation has been 

observed between a higher constitutive SOD level and a higher salt tolerance in Citrus 

limonum on sour orange, in relation to the other combinations (Almansa et al. 2002). 
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 Calcium has been found to be involved in the regulation of various responses of plants 

to environmental stresses (Knight et al. 1997; Liu and Zhu 1998; Jiang and Huang 2001). 

Calcium may be involved in plant tolerance of heat stress by regulating antioxidant 

metabolism (Gong et al. 1998; Jiang and Huang 2001). External Ca2+ also increased drought 

resistance in Vigna catjang L., soybean, and cotton (Mukherjee and Choudhuri 1985; Yang et 

al. 1993), and increased salt tolerance in bean (Cachorro et al. 1993). 

The effect of Ca2+ on the activity of antioxidant enzymes seems to depend on the plant 

species. In heat-stressed tall fescue (Festuca arandinacea L.) and Kentucky blue grass (Poa 

pratensis L.), Ca2+ treatment increased CAT, GR, and APX activities and reduced lipid 

peroxidation (Jiang and Huang 2001). Calcium also enhanced ABA-induced thermotolerance 

in maize seedlings, increasing the SOD and APX activities and lowering the heat stress-

induced lipid peroxidation (Gong et al. 1998). In contrast, pre-treatment of maize seedlings 

with the Ca2+ chelator EGTA (plus ABA), which lowered calcium content and weakened the 

ABA-induced thermotolerance, also lowered the ABA-induced SOD and APX activities 

(Gong et al. 1998). However, in tobacco plants, Price et al. (1994) suggested that [Ca2+]cyt 

mediated the inhibition of SOD by H2O2. However, it is not known how [Ca2+]cyt mediates 

this inhibition and whether it does so directly or indirectly, but either phosphorylation by 

calcium-dependent protein kinases or the action of specific calcium-dependent proteases are 

possibilities (Price et al. 1994). However, there is no information about the effect of Ca2+ on 

antioxidant enzymes under saline conditions. One may consider transient changes in cytosolic 

calcium as a common mediator affected by oxidative stress (Price et al. 1994) and salinity 

(Lynch et al. 1987). 

Some studies have suggested that calcium loading in root cells induces a dramatic 

increase in O2
.- release during wound stress (Minibayeba et al. 1998). Other authors reported 

that production of AOS is stimulated by Ca2+ and calmodulin in purified plasma membrane 

from wheat roots and transgenic tobacco expressing a foreign calmodulin gene (Qiu et al. 



 14 

1995; Harding et al. 1997). However, excessive Ca2+ released into the cytosol and a sustained 

high cytosolic Ca2+ concentration might be cytotoxic (Hepler and Wayne 1985; Biyasheva et 

al. 1993) and, probably, this toxic effect could be due, at least partly, to the increased AOS 

generation. Under saline conditions, calcium-treated loquat plants had higher SOD levels than 

anger plants. Probably, the increase in SOD activity, observed in loquat plants under these 

conditions, could have been mediated by the higher O2
.- production, that could have been 

induced by excessive Ca2+. In this sense, it should be pointed out that loquat plants 

accumulated much more Ca2+ in leaves than did anger plants. It should be borne in mind that 

SOD activity is an important H2O2 source and that loquat plants had lower CAT and APX 

levels (H2O2-scavenging enzymes). This suggests that loquat plants treated with NaCl plus 

Ca2+ could generate more H2O2, and that they have a lower capacity to eliminate it than anger 

plants. This was reflected in higher TBARS levels and a growth reduction in loquat plants. In 

others work, a positive correlation between salts accumulation and oxidative stress has been 

observed (Hernández et al., 1993, 1995, 2001, Sehmer et al. 1995). Sjölin and Mφller (1991) 

have demostrated that salts stimulated electron transport in submitochondrial particles (SMPs) 

from potato through electrostatic charge screening, and this could be the reason for the 

enhanced production of O2
.- observed in pea leaf SMPs from salt-treated plants (Hernández et 

al., 1993). This higher O2
.- production was correlated with an increase in mitochondrial lipid 

peroxidation (Hernádez et al., 1993). In chloroplasts from salt-treated pea plants, an increase 

in H2O2 and in lipid peroxidation has been described (Hernández et al., 1995). In both cases, 

the increase in O2
.- and H2O2  was correlated with an increase in the Na+ and Cl- contents in 

leaves. In the present work, a correlation between lower Cl- levels and lower lipid 

peroxidation levels was observed in anger plants, and this was accompanied by a higher levels 

of antioxidant enzymes  

The mechanism by which Ca2+ could regulate antioxidant enzymes remains to be 

determined. It has been described that Ca2+ acts by regulating NAD kinase and ∆1-pyrroline-
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5-carboxylate synthetase (Delumeau et al. 2000; Knight et al. 1992). In plants, calcium-

dependent protein kinases, calmodulin and calcineurin-B-like proteins (AtCBLs) are also 

obvious candidates for primary decoders of [Ca2+]cyt oscillations (Evans et al., 2001). 

Probably, changes in these proteins could be involved in the regulation of antioxidant 

enzymes mediated by Ca, directly or indirectly, involving either phosphorylation by calcium-

dependent protein kinases or the action of specific calcium-dependent proteases, as suggested 

for the H2O2-inhibition of SOD mediated by Ca in tobacco plants (Price et al. 1994). 

However, these proteins are regulated by µM increases in cytosolic calcium concentrations 

(Evans et al., 2001), and, unfortunately, the method used for Ca2+ determination only provides 

total leaf content and thus cannot inform us about Ca2+ distribution in different cell 

compartments. 

The presence of antioxidant isozymes in different subcellular compartments has been 

described (Foyer and Halliwell 1976; Jiménez et al. 1997; Gómez et al. 1999; Hernández et 

al. 2000; Mittova et al. 2003), although the presence of the ASC-GSH cycle enzymes in 

apoplast is doubtful (Hernández et al. 2001). The results obtained by several authors show 

that the activity of antioxidant enzymes and their transcript levels varied considerably in 

response to NaCl stress (Bueno et al. 1998; Savouré et al. 1999; Hernández et al. 2000). On 

the other hand, it has been suggested that the different response of SOD isozymes induced by 

NaCl stress could be related to the subcellular compartment where these isozymes are present 

(Bueno et al. 1998; Hernández et al. 2000). It has been suggested that the enhanced tolerance 

to NaCl requires induction of organelle-specific antioxidant enzymes (Hernández et al. 1993, 

1995, 2000; Gómez et al.1999; Mittova et al, 2003). Enzymes functioning in elimination of 

AOS in the cytoplasm were induced by salt stress in salt-tolerant Citrus and in pea plants 

(Gueta-Dahan et al. 1997; Hernández et al. 2000), as well as in chloroplast and mitochondria 

from salt-tolerant pea and Lycopersicom pennellii plants (Hernández et al. 1993, 1995; 

Gómez et al. 1999; Mittova et al. 2003). 
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In the present work, results for antioxidant enzymes must be considered with caution, 

because analyses have been restricted to total specific activity, and changes observed could be 

due to changes in the levels of particular isoforms. It has been suggested that changes in the 

levels of particular isoforms of such enzymes, rather than changes in the level of total activity, 

may be more important (Stevens et al. 1997; Hernández et al. 2000). In Citrus plants, salt 

induction of cytosolic APX, which is not exhibited in total APX activity, indicated that 

although its contribution to the total activity is minor, its localization might be of great 

importance (Gueta-Dahan et al. 1997). Such importance for the cytosolic compartment in the 

plant’s response to salt stress has been suggested also for pea (Hernández et al. 2000). 

In conclusion, these results suggest that anger plants have a higher capacity to 

scavenge AOS, both under control and saline conditions. Accordingly, and related to the 

smaller leaf increase in Cl- observed, anger plants are more salt-tolerant, at least partly due to 

the higher antioxidant enzyme levels observed. On the other hand, in loquat plants althought 

Ca2+ addition did not improve plant growth, it decreased the Cl- and Na+ absorption and/or 

transport to the leaves.  
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Legend to Figures 

Fig. 1.- Effect of NaCl and Ca additions (expressed as mM) to the nutrient media on leaf 

growth of anger and loquat plants. Data are the means ± SE of at least ten different plant 

samples. Different letters indicate significant differences (p< 0.05) according to Duncan’s 

Multiple Range Test. 

 

Fig. 2.- Effect of NaCl and Ca additions (expressed as mM)to the nutrient media on Na+ (a), 

Cl- (b) and Ca2+ (c) concentrations in anger and loquat leaves. Data are the means ± SE of at 

least ten different plant samples. Different letters indicate significant differences (p< 0.05) 

according to Duncan’s Multiple Range Test. 

 

Fig 3.- Effect of NaCl and Ca additions (expressed as mM) to the nutrient media on catalase 

(a) and APX (b) activities of anger and loquat leaves. Data are the means ± SE of at least four 

different plant samples. Different letters indicate significant differences (p< 0.05) according 

to Duncan’s Multiple Range Test. 

 

Fig. 4.- Effect of NaCl and Ca additions (expressed as mM) to the nutrient media on MDHAR 

(a) and DHAR (b) activities of anger and loquat leaves. Data are the means ± SE of at least 

four different plant samples. Different letters indicate significant differences (p< 0.05) 

according to Duncan’s Multiple Range Test. 

 

Fig. 5.- Effect of NaCl and Ca additions (expressed as mM) to the nutrient media on GR (a) 

and SOD (b) activities of anger and loquat leaves. Data are the means ± SE of at least four 

different plant samples. Different letters indicate significant differences (p< 0.05) according 

to Duncan’s Multiple Range Test. 

 

Fig. 6.- Effect of NaCl and Ca additions (expressed as mM) to the nutrient media on lipid 

peroxidation (given as TBARS) in anger and loquat leaves. Data are the means ± SE of at 

least four different plant samples. Different letters indicate significant differences (p< 0.05) 

according to Duncan’s Multiple Range Test. 
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Fig 2 
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Fig. 5 
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Fig. 6 
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