14 research outputs found

    Indigenous plants promote insect biodiversity in urban greenspaces

    Get PDF
    The contribution of urban greenspaces to support biodiversity and provide benefits for people is increasingly recognized. However, ongoing management practices favor vegetation oversimplification, often limiting greenspaces to lawns and tree canopy rather than multi-layered vegetation that includes under- and midstorey, and the use of nonnative species. These practices hinder the potential of greenspaces to sustain indigenous biodiversity, particularly for taxa like insects that rely on plants for food and habitat. Yet, little is known about which plant species may maximize positive outcomes for taxonomically and functionally diverse insect communities in greenspaces. Additionally, while cities are expected to experience high rates of introductions, quantitative assessments of the relative occupancy of indigenous vs. introduced insect species in greenspace are rare, hindering understanding of how management may promote indigenous biodiversity while limiting the establishment of introduced insects. Using a hierarchically replicated study design across 15 public parks, we recorded occurrence data from 552 insect species on 133 plant species, differing in planting design element (lawn, midstorey, and tree canopy), midstorey growth form (forbs, lilioids, graminoids, and shrubs) and origin (nonnative, native, and indigenous), to assess (1) the relative contributions of indigenous and introduced insect species and (2) which plant species sustained the highest number of indigenous insects. We found that the insect community was overwhelmingly composed of indigenous rather than introduced species. Our findings further highlight the core role of multi-layered vegetation in sustaining high insect biodiversity in urban areas, with indigenous midstorey and canopy representing key elements to maintain rich and functionally diverse indigenous insect communities. Intriguingly, graminoids supported the highest indigenous insect richness across all studied growth forms by plant origin groups. Our work highlights the opportunity presented by indigenous understory and midstorey plants, particularly indigenous graminoids, in our study area to promote indigenous insect biodiversity in urban greenspaces. Our study provides a blueprint and stimulus for architects, engineers, developers, designers, and planners to incorporate into their practice plant species palettes that foster a larger presence of indigenous over regionally native or nonnative plant species, while incorporating a broader mixture of midstorey growth forms

    Connectivity within and among a Network of Temperate Marine Reserves

    Get PDF
    Networks of marine reserves are increasingly being promoted as a means of conserving marine biodiversity. One consideration in designing systems of marine reserves is the maintenance of connectivity to ensure the long-term persistence and resilience of populations. Knowledge of connectivity, however, is frequently lacking during marine reserve design and establishment. We characterise patterns of genetic connectivity of 3 key species of habitat-forming macroalgae across an established network of temperate marine reserves on the east coast of Australia and the implications for adaptive management and marine reserve design. Connectivity varied greatly among species. Connectivity was high for the subtidal macroalgae Ecklonia radiata and Phyllospora comosa and neither species showed any clear patterns of genetic structuring with geographic distance within or among marine parks. In contrast, connectivity was low for the intertidal, Hormosira banksii, and there was a strong pattern of isolation by distance. Coastal topography and latitude influenced small scale patterns of genetic structure. These results suggest that some species are well served by the current system of marine reserves in place along this temperate coast but it may be warranted to revisit protection of intertidal habitats to ensure the long-term persistence of important habitat-forming macroalgae. Adaptively managing marine reserve design to maintain connectivity may ensure the long-term persistence and resilience of marine habitats and the biodiversity they support
    corecore