36 research outputs found
Habitat analysis of North American sand flies near veterans returning from leishmania-endemic war zones
<p>Abstract</p> <p>Background</p> <p>Nearly 1300 cases of leishmaniasis have been identified in American military personnel deployed to Iraq and Afghanistan. The symptoms of this disease can range from a mild, self-limiting cutaneous infection to a deadly visceral infection and are not prevented by chemoprophylaxis or immunization. Effective treatments, however, are available. The disease-causing parasite is spread through the bite of the female sand fly. Although the disease occurs in both the Old World and the New World, the parasite species differ between the hemispheres. The large number of cases in military veterans has caused some concern that Old World, temperate-adapted parasite species could be introduced into the native sand fly populations of American military facilities where veterans of the current conflicts return following their deployments. This paper reports part of a larger study to analyze the risk of such an accidental importation. Four potential habitats on two large Army facilities in the Southeast United States were surveyed to determine relative sand fly density. The National Land Cover Map was used to provide sand fly density prediction maps by habitat.</p> <p>Results</p> <p>Sand fly density was significantly higher in deciduous forest and even higher at the interface between forest and open grassland. The evergreen forest and agricultural fields supported very low densities. On Fort Campbell, KY, the percentage of land covered by suitable habitat was very high. A sand fly density prediction map identified large tracts of land where infected individuals would be at higher risk of exposure to sand fly bites, resulting in an increased risk of introducing the parasite to a native insect population. On Fort Bragg, NC, however, commercial farming of long leaf pine reduced the percentage of the land covered in vegetation suitable for the support of sand flies. The risk of introducing an exotic <it>Leishmania spp</it>. on Fort Bragg, therefore, is considered to be much lower than on Fort Campbell.</p> <p>Conclusion</p> <p>A readily available land cover product can be used at the regional level to identify areas of sand fly habitat where human populations may be at higher risk of exposure. The sand fly density prediction maps can be used to direct further surveillance, insect control, or additional patient monitoring of potentially infected soldiers.</p
Spatial correlations of mapped malaria rates with environmental factors in Belize, Central America
BACKGROUND: The purposes of this study were to map overall malaria incidence rates from 1989 through 1999 for villages in Belize; to assess the seasonal distribution of malaria incidence by region; and to correlate malaria incidence rates with vegetation cover and rivers in villages, using geographic information system technology. Malaria information on 156 villages was obtained from an electronic database maintained by the Belize National Malaria Control Program. Average annual malaria incidence rates per 1000 population over 10 years were calculated for villages using the 1991 population census as a denominator. Malaria incidence rates were integrated with vegetation cover from a 1995 vegetation map, and with river data from a digital data set. RESULTS: Mapping malaria incidence over the 10-year period in the study villages indicated the existence of a spatial pattern: the southern and western areas of Belize had consistently higher rates of malaria than northern areas. Examination of the seasonal distribution of malaria incidence by month over 10 years indicated that a statistically significant difference existed among districts and among months (p < 0.05). Spatial analysis of malaria incidence rates and of vegetation in Belize showed villages with high malaria rates having more broadleaf hill forests, agricultural land, and wetland vegetation types (i.e. SWF-seasonally waterlogged fire-induced shrubland of the plains). Statistical and spatial analyses of malaria incidence and of river distributions in Belize determined the high 10 percentile malaria incidence villages in western and southern Belize to have more rivers within two kilometers of the center of a village and a statistically significant correlation between proximity to rivers and villages (Spearman's γ = -0.23; p < 0.05), especially in Stann Creek District (Spearman's γ = -0.82; p < 0.05). CONCLUSIONS: Examination of the distribution of malaria during 10 years indicated transmission varied among geographic areas and among seasons. Additional studies are needed to examine, in more detail, the association between environmental and meteorological factors and malaria transmission. Furthermore, the role of An. darlingi in malaria transmission in Stann Creek needs further study since, of the three main vectors in Belize, An. darlingi has been found strongly associated with rivers
Ecological niche model of Phlebotomus alexandri and P. papatasi (Diptera: Psychodidae) in the Middle East
<p>Abstract</p> <p>Background</p> <p>The purpose of this study is to create distribution models of two sand fly species, <it>Phlebotomus papatasi </it>(Scopoli) and <it>P. alexandri </it>(Sinton), across the Middle East. <it>Phlebotomus alexandri </it>is a vector of visceral leishmaniasis, while <it>P. papatasi </it>is a vector of cutaneous leishmaniasis and sand fly fever. Collection records were obtained from literature reports from 1950 through 2007 and unpublished field collection records. Environmental layers considered in the model were elevation, precipitation, land cover, and WorldClim bioclimatic variables. Models were evaluated using the threshold-independent area under the curve (AUC) receiver operating characteristic analysis and the threshold-dependent minimum training presence.</p> <p>Results</p> <p>For both species, land cover was the most influential environmental layer in model development. The bioclimatic and elevation variables all contributed to model development; however, none influenced the model as strongly as land cover.</p> <p>Conclusion</p> <p>While not perfect representations of the absolute distribution of <it>P. papatasi </it>and <it>P. alexandri</it>, these models indicate areas with a higher probability of presence of these species. This information could be used to help guide future research efforts into the ecology of these species and epidemiology of the pathogens that they transmit.</p
A Digital Tectonic Activity Map of the Earth
The subject of neotectonics, covering the structures and structural activity of the last 5 million years (i.e., post-Miocene) is a well-recognized field, including "active tectonics," focussed on the last 500,000 years in a 1986 National Research Council report of that title. However, there is a cartographic gap between tectonic maps, generally showing all features regardless of age, and maps of current seismic or volcanic activity. We have compiled a map intended to bridge this gap, using modern data bases and computer-aided cartographic techniques. The maps presented here are conceptually descended from an earlier map showing tectonic and volcanic activity of the last one million years. Drawn by hand with the National Geographic Society's 1975 "The Physical World" map as a base, the 1981 map in various revisions has been widely reproduced in textbooks and various technical publications. However, two decades of progress call for a completely new map that can take advantage of new knowledge and cartographic techniques. The digital tectonic activity map (DTM), presented in shaded relief (Fig. 1) and schematic (Fig. 2) versions, is the result. The DTM is intended to show tectonism and volcanism of the last one million years, a period long enough to be representative of global activity, but short enough that features such as fault scarps and volcanos are still geomorphically recognizable. Data Sources and Cartographic Methods The DTM is based on a wide range of sources, summarized in Table 1. The most important is the digital elevation model, used to construct a shaded relief map. The bathymetry is largely from satellite altimetry, specifically the marine gravity compilations by Smith and Sandwell (1996). The shaded relief map was designed to match the new National Geographic Society world physical map (1992), although drawn independently, from the digital elevation model. The Robinson Projection is used instead of the earlier Van der Grinten one. Although neither conformal nor equal-area, the Robinson Projection provides a reasonable compromise and retains useful detail at high latitudes
Swine Trichinella Infection and Geographic Information System Tools
Pastured pigs are vulnerable to Trichinella spiralis infection through exposure to wild reservoir hosts. To evaluate the potential impact of the expanding production of pork from pasture-raised pigs, we mapped locations of T. spiralis occurrence and pastured-pig farms in the United States. Twenty-eight farms were located within 50 km of previous infection
The relationship between mosquito abundance and rice field density in the Republic of Korea
<p>Abstract</p> <p>Background</p> <p>Japanese encephalitis virus (JEV), the causative agent of Japanese encephalitis (JE), is endemic to the Republic of Korea (ROK) where unvaccinated United States (U.S.) military Service members, civilians and family members are stationed. The primary vector of the JEV in the ROK is <it>Culex tritaeniorhynchus</it>. The ecological relationship between <it>Culex </it>spp. and rice fields has been studied extensively; rice fields have been shown to increase the prevalence of <it>Cx. tritaeniorhynchus</it>. This research was conducted to determine if the quantification of rice field land cover surrounding U.S. military installations in the ROK should be used as a parameter in a larger risk model that predicts the abundance of <it>Cx. tritaeniorhynchus </it>populations.</p> <p>Mosquito data from the U.S. Forces Korea (USFK) mosquito surveillance program were used in this project. The average number of female <it>Cx. tritaeniorhynchus </it>collected per trap night for the months of August and September, 2002-2008, was calculated. Rice fields were manually digitized inside 1.5 km buffer zones surrounding U.S. military installations on high-resolution satellite images, and the proportion of rice fields was calculated for each buffer zone.</p> <p>Results</p> <p>Mosquito data collected from seventeen sample sites were analyzed for an association with the proportion of rice field land cover. Results demonstrated that the linear relationship between the proportion of rice fields and mosquito abundance was statistically significant (R<sup>2 </sup>= 0.62, r = .79, F = 22.72, p < 0.001).</p> <p>Conclusions</p> <p>The analysis presented shows a statistically significant linear relationship between the two parameters, proportion of rice field land cover and log<sub>10 </sub>of the average number of <it>Cx. tritaeniorhynchus </it>collected per trap night. The findings confirm that agricultural land cover should be included in future studies to develop JE risk prediction models for non-indigenous personnel living at military installations in the ROK.</p
Distribution of Triatoma dimidiata sensu lato (Reduviidae: Triatominae) and risk factors associated with household invasion in Northern Belize, Central America
To date, Triatoma dimidiata sensu lato [Reduviidae: Triatominae (Latreille 1811)] remains the sole vector species associated with Chagas disease transmission reported from Belize. Human infection data are limited for Belize and the disease transmission dynamics have not been thoroughly investigated, yet the likelihood of autochthonous transmission is supported by the widespread collection of infected vectors from within local households. Here, we report updated infection rates of the vector population and infestation rates for villages in north and central Belize. Overall, 275 households were enrolled in an ongoing vector surveillance program. Of the 41 insects collected, 25 were PCR positive for T. cruzi, indicating an infection rate as high as 60%. To further characterize the epidemiological risk of human-vector contact, determinants of household invasion were modeled. Local households were surveyed and characterized with respect to over 25 key factors that may be associated with household infestation by T. dimidiata s.l. While final models were not strongly predictive with respect to the risk factors that were surveyed, likely due to the low number of collection observations, the presence of domestic/peri-domestic dogs, nearby light sources, and household structure materials could be the focus of continued risk assessments. In northern Belize, this vector survey lends support to T. dimidiata s.l. inhabiting sylvatic settings as opposed to the classical paradigm of domiciliated vector populations. This designation has strong implications for the local level of human exposure risk which can help guide vector surveillance and control resources
The AFHSC-Division of GEIS Operations Predictive Surveillance Program: a multidisciplinary approach for the early detection and response to disease outbreaks
The Armed Forces Health Surveillance Center, Division of Global Emerging Infections Surveillance and Response System Operations (AFHSC-GEIS) initiated a coordinated, multidisciplinary program to link data sets and information derived from eco-climatic remote sensing activities, ecologic niche modeling, arthropod vector, animal disease-host/reservoir, and human disease surveillance for febrile illnesses, into a predictive surveillance program that generates advisories and alerts on emerging infectious disease outbreaks. The program’s ultimate goal is pro-active public health practice through pre-event preparedness, prevention and control, and response decision-making and prioritization. This multidisciplinary program is rooted in over 10 years experience in predictive surveillance for Rift Valley fever outbreaks in Eastern Africa. The AFHSC-GEIS Rift Valley fever project is based on the identification and use of disease-emergence critical detection points as reliable signals for increased outbreak risk. The AFHSC-GEIS predictive surveillance program has formalized the Rift Valley fever project into a structured template for extending predictive surveillance capability to other Department of Defense (DoD)-priority vector- and water-borne, and zoonotic diseases and geographic areas. These include leishmaniasis, malaria, and Crimea-Congo and other viral hemorrhagic fevers in Central Asia and Africa, dengue fever in Asia and the Americas, Japanese encephalitis (JE) and chikungunya fever in Asia, and rickettsial and other tick-borne infections in the U.S., Africa and Asia
Baltimore - Washington: 200 Years of Urban Growth
This series of animated maps portrays the growth and gradual
merger over the past 200 years of Washington and Baltimore. Researchers
incorporated historical maps and census information dating back to 1792,
as well as satellite photographs and other data collected from NASA
satellites and space shuttles over the past 25 years. The animated
maps provide a powerful tool that could help manage the regions
suburban sprawl in the near future. These animations were developed using
provisional data, which may contain anomalies. The final database is
scheduled for completion after June, 1996. Educational levels: Undergraduate lower division, Undergraduate upper division, Graduate or professional