40 research outputs found

    Impurity and quaternions in nonrelativistic scattering from a quantum memory

    Full text link
    Models of quantum computing rely on transformations of the states of a quantum memory. We study mathematical aspects of a model proposed by Wu in which the memory state is changed via the scattering of incoming particles. This operation causes the memory content to deviate from a pure state, i.e. induces impurity. For nonrelativistic particles scattered from a two-state memory and sufficiently general interaction potentials in 1+1 dimensions, we express impurity in terms of quaternionic commutators. In this context, pure memory states correspond to null hyperbolic quaternions. In the case with point interactions, the scattering process amounts to appropriate rotations of quaternions in the frequency domain. Our work complements a previous analysis by Margetis and Myers (2006 J. Phys. A 39 11567--11581).Comment: 16 pages, no figure

    Subcellular peptide localization in single identified neurons by capillary microsampling mass spectrometry

    Get PDF
    Single cell mass spectrometry (MS) is uniquely positioned for the sequencing and identification of peptides in rare cells. Small peptides can take on different roles in subcellular compartments. Whereas some peptides serve as neurotransmitters in the cytoplasm, they can also function as transcription factors in the nucleus. Thus, there is a need to analyze the subcellular peptide compositions in identified single cells. Here, we apply capillary microsampling MS with ion mobility separation for the sequencing of peptides in single neurons of the mollusk Lymnaea stagnalis, and the analysis of peptide distributions between the cytoplasm and nucleus of identified single neurons that are known to express cardioactive Phe-Met-Arg-Phe amide-like (FMRFamide-like) neuropeptides. Nuclei and cytoplasm of Type 1 and Type 2 F group (Fgp) neurons were analyzed for neuropeptides cleaved from the protein precursors encoded by alternative splicing products of the FMRFamide gene. Relative abundances of nine neuropeptides were determined in the cytoplasm. The nuclei contained six of these peptides at different abundances. Enabled by its relative enrichment in Fgp neurons, a new 28-residue neuropeptide was sequenced by tandem MS

    Fundamental aspects of X-ray photoacoustic phenomena

    No full text
    The mechanism why extended X-ray absorption fine structure (EXAFS) is observed in X-ray photoacoustic spectra, has been discussed from various points of view, however, it is still unclear. We continued to gather many aspects of data of X-ray photoacoustic phenomena in order to solve this question. Recently, we found EXAFS also in phase spectra of X-ray photoacoustic signal and related it with the signal shape. This phenomenon reflects the thermal depth depending on the absorption coefficients, however, there are left still unresolved aspects. All aspects of the data are shown and discussed in relation to its mechanism
    corecore