155 research outputs found

    A Study of Bird Inhabitation as Seen in Farmlands in Nishi Ward of Kobe City and the Eastern Part of Akashi City

    Get PDF
    The authors selected three farmland-containing areas in Nishi Ward of Kobe City and the eastern part of Akashi City for this ecological study to investigate the current situations of bird inhabitation in suburban areas and within the cities. Through this study, the following results were obtained in terms of bird inhabitation in the rural forest (Satoyama) area and in the farming area: 10 orders, 23 families and 35 species; and 9 orders, 20 families and 30 species, respectively. In the urban area, 4 orders, 10 families and 30 species of birds were observed, most of which were city birds. The species and the population number of birds observed in this study along with the diversity index obtained from the observation results revealed that the rural forest and farming areas, located in the vicinity of urban areas, conserve a certain degree of the natural environment required for bird inhabitation, even while experiencing strong effects of urbanization. Although the bird species observed in these areas were different, the diversity of the species and the population number of birds found showed similar values. Therefore, this study suggests that agricultural areas preserve a crucial environment for bird inhabitation, which is equivalent to that of hilly areas

    Measurement of thermophoretic parameters for binary gas mixtures

    Get PDF
    The thermophoretic velocity of a particle in a gas mixture is measured by means of a microgravity experiment. Adopted particles are PMMA spheres of 2.91 mm in mean diameter, and gas mixtures chosen are argon–nitrogen, argon–carbon dioxide, and nitrogen–carbon dioxide. The temperature gradient and the pressure are 60 K/mm and 70 kPa, respectively. Terminal velocities of particles suspended in a gas are individually measured. The tangential momentum accommodation coefficient is estimated from experimental result by assuming the thermal accommodation coefficient at unity, and it is compared with predictions calculated from values of composing pure gases by means of some methods given in references; among those methods, the intermolecular-interaction�based method is found to be the best for all mixture conditions

    Srv2/CAP is required for polarized actin cable assembly and patch internalization during clathrin-mediated endocytosis

    Get PDF
    The dynamic assembly and disassembly of actin filaments is essential for the formation and transport of vesicles during endocytosis. In yeast, two types of actin structures, namely cortical patches and cytoplasmic cables, play a direct role in endocytosis, but how their interaction is regulated remains unclear. Here, we show that Srv2/CAP, an evolutionarily conserved actin regulator, is required for efficient endocytosis owing to its role in the formation of the actin patches that aid initial vesicle invagination and of the actin cables that these move along. Deletion of the SRV2 gene resulted in the appearance of aberrant fragmented actin cables that frequently moved past actin patches, the sites of endocytosis. We find that the C-terminal CARP domain of Srv2p is vitally important for the proper assembly of actin patches and cables; we also demonstrate that the N-terminal helical folded domain of Srv2 is required for its localization to actin patches, specifically to the ADP-actin rich region through an interaction with cofilin. These results demonstrate the in vivo roles of Srv2p in the regulation of the actin cytoskeleton during clathrin-mediated endocytosi

    Tomato root-associated Sphingobium harbors genes for catabolizing toxic steroidal glycoalkaloids

    Get PDF
    トマト根に定着する細菌からトマトの毒を分解する酵素を発見 --土壌微生物が植物の分泌する有害成分を解毒するメカニズムの理解に貢献--. 京都大学プレスリリース. 2023-10-02.Roots of Bloody Mary. Tomato root-associated Sphingobium harbors genes for neutralizing toxic compound. 京都大学プレスリリース. 2023-10-06.Plant roots exude various organic compounds, including plant specialized metabolites (PSMs), into the rhizosphere. The secreted PSMs enrich specific microbial taxa to shape the rhizosphere microbiome, which is crucial for the healthy growth of the host plants. PSMs often exhibit biological activities; in turn, some microorganisms possess the capability to either resist or detoxify them. Saponins are structurally diverse triterpene-type PSMs that are mainly produced by angiosperms. They are generally considered as plant defense compounds. We have revealed that α-tomatine, a steroid-type saponin secreted from tomato (Solanum lycopersicum) roots, increases the abundance of Sphingobium bacteria. To elucidate the mechanisms underlying the α-tomatine-mediated enrichment of Sphingobium, we isolated Sphingobium spp. from tomato roots and characterized their saponin-catabolizing abilities. We obtained the whole-genome sequence of Sphingobium sp. RC1, which degrades steroid-type saponins but not oleanane-type ones, and performed a gene cluster analysis together with a transcriptome analysis of α-tomatine degradation. The in vitro characterization of candidate genes identified six enzymes that hydrolyzed the different sugar moieties of steroid-type saponins at different positions. In addition, the enzymes involved in the early steps of the degradation of sapogenins (i.e., aglycones of saponins) were identified, suggesting that orthologs of the known bacterial steroid catabolic enzymes can metabolize sapogenins. Furthermore, a comparative genomic analysis revealed that the saponin-degrading enzymes were present exclusively in certain strains of Sphingobium spp., most of which were isolated from tomato roots or α-tomatine-treated soil. Taken together, these results suggest a catabolic pathway for highly bioactive steroid-type saponins in the rhizosphere

    Endometrial Cancer and Hypermethylation: Regulation of DNA and MicroRNA by Epigenetics

    Get PDF
    Endometrial cancer is the seventh most common cancer in women worldwide. Therefore elucidation of the pathogenesis and development of effective treatment for endometrial cancer are important. However, several aspects of the mechanism of carcinogenesis in the endometrium remain unclear. Associations with genetic variation and mutations of cancer-related genes have been shown, but these do not provide a complete explanation. Therefore, in recent years, epigenetic mechanisms that do not involve changes in DNA sequences have been examined. Studies aimed at detection of aberrant DNA hypermethylation in cancer cells present in microscopic amounts in vivo and application of the results to cancer diagnosis have also started. Breakdown of the DNA mismatch repair mechanism is thought to play a large role in the development of endometrial cancer, with changes in the expression of the hMLH1 gene being particularly important. Silencing of genes such as APC and CHFR, Sprouty 2, RASSF1A, GPR54, CDH1, and RSK4 by DNA hypermethylation, onset of Lynch syndrome due to hereditary epimutation of hMLH1 and hMSH2 mismatch repair genes, and regulation of gene expression by microRNAs may also underlie the carcinogenic mechanisms of endometrial cancer. Further understanding of these issues may permit development of new therapies

    Tobacco Root Endophytic Arthrobacter Harbors Genomic Features Enabling the Catabolism of Host-Specific Plant Specialized Metabolites

    Get PDF
    Plant roots constitute the primary interface between plants and soilborne microorganisms and harbor microbial communities called the root microbiota. Recent studies have demonstrated a significant contribution of plant specialized metabolites (PSMs) to the assembly of root microbiota. However, the mechanistic and evolutionary details underlying the PSM-mediated microbiota assembly and its contribution to host specificity remain elusive. Here, we show that the bacterial genus Arthrobacter is predominant specifically in the tobacco endosphere and that its enrichment in the tobacco endosphere is partially mediated by a combination of two unrelated classes of tobacco-specific PSMs, santhopine and nicotine. We isolated and sequenced Arthrobacter strains from tobacco roots as well as soils treated with these PSMs and identified genomic features, including but not limited to genes for santhopine and nicotine catabolism, that are associated with the ability to colonize tobacco roots. Phylogenomic and comparative analyses suggest that these genes were gained in multiple independent acquisition events, each of which was possibly triggered by adaptation to particular soil environments. Taken together, our findings illustrate a cooperative role of a combination of PSMs in mediating plant species-specific root bacterial microbiota assembly and suggest that the observed interaction between tobacco and Arthrobacter may be a consequence of an ecological fitting process

    Improving oxygen reduction reaction activity and durability of 1.5nm Pt by addition of ruthenium oxide nanosheets

    Get PDF
    The durability of commercial carbon supported Pt nanoparticles with an average particle size of 1.5 nm (20 mass% Pt/C) has been improved by the addition of ruthenium oxide nanosheets (RuO2ns) without sacrificing the initial activity towards oxygen reduction reaction. The initial oxygen reduction reaction activity of the composite catalyst was slightly higher than as-received Pt/C. The electrocatalytic activity after consecutive potential cycling tests of the composite catalyst was c.a. 1.3 times higher than non-modified Pt/C. The increased durability of the composite catalyst is attributed to the improved preservation of the electrochemically active Pt surface area with the addition of ruthenium oxide. Keywords: Polymer electrolyte fuel cell, Oxygen reduction reaction, Durability, Ruthenium oxide, Nanosheet
    corecore