9,753 research outputs found
Immunization of networks with community structure
In this study, an efficient method to immunize modular networks (i.e.,
networks with community structure) is proposed. The immunization of networks
aims at fragmenting networks into small parts with a small number of removed
nodes. Its applications include prevention of epidemic spreading, intentional
attacks on networks, and conservation of ecosystems. Although preferential
immunization of hubs is efficient, good immunization strategies for modular
networks have not been established. On the basis of an immunization strategy
based on the eigenvector centrality, we develop an analytical framework for
immunizing modular networks. To this end, we quantify the contribution of each
node to the connectivity in a coarse-grained network among modules. We verify
the effectiveness of the proposed method by applying it to model and real
networks with modular structure.Comment: 3 figures, 1 tabl
Collective fluctuations in networks of noisy components
Collective dynamics result from interactions among noisy dynamical
components. Examples include heartbeats, circadian rhythms, and various pattern
formations. Because of noise in each component, collective dynamics inevitably
involve fluctuations, which may crucially affect functioning of the system.
However, the relation between the fluctuations in isolated individual
components and those in collective dynamics is unclear. Here we study a linear
dynamical system of networked components subjected to independent Gaussian
noise and analytically show that the connectivity of networks determines the
intensity of fluctuations in the collective dynamics. Remarkably, in general
directed networks including scale-free networks, the fluctuations decrease more
slowly with the system size than the standard law stated by the central limit
theorem. They even remain finite for a large system size when global
directionality of the network exists. Moreover, such nontrivial behavior
appears even in undirected networks when nonlinear dynamical systems are
considered. We demonstrate it with a coupled oscillator system.Comment: 5 figure
Improved perfluoroalkylether fluid development
The objective of this program was to optimize and scale up the linear perfluoroalkylether stabilization process and to provide test data regarding the fluids' thermal oxidative stability in the presence of metal alloys. The stabilization of Fomblin Z-25 was scaled up to 300 g of fluid. The modified fluid was stable at 316 C in oxygen in the presence of M-50 alloy for more than 24 hrs but less than 40 hrs; the amount of volatiles produced after 24 hrs was 5.5 mg/g. In the presence of Ti(4Al,4Mn) alloy, under the above conditions, following an exposure of 24 hrs, the amount of volatiles formed was 6.2 mg/g; 56 hrs exposure yielded 13.9 mg/g. The commercial fluid at 288 C (in oxygen) in the presence of M-50 after 15 hrs of exposure decomposed extensively, 342 mg/g; in the presence of Ti(4Al,4Mn) alloy after only 8 hrs at 288 C, the amount of volatiles was 191 mg/g. Formulation of the commercial fluid with C2PN3 additive was not as effective as the stabilization processing. All the perfluoroalkylether fluids studied were stable in nitrogen at 343 C. The thermal oxidative stability in the absence of metal alloys varied, with Aflunox exhibiting the best behavior. All the fluids were degraded in oxygen at 316 C during 24 hrs exposure to Ti(4Al,4Mn) alloy with the exception of a perfluoroalkylether substituted triazine and the modified Z-25
Sumacku or Smack? The value of analyzing acoustic signals when investigating the fundamental phonological unit of language production
An ongoing debate in the speech production literature suggests that the initial building block to build up speech sounds differs between languages. That is, Germanic languages are suggested to use the phoneme, but Japanese and Chinese are proposed to use the mora or syllable, respectively. Several studies investigated this matter from a chronometric perspective (i.e., RTs and accuracy). However, a less attention has been paid to the actual acoustic utterances. The current study investigated the verbal responses of two Japanese-English bilingual groups of different proficiency levels (i.e., high and low) when naming English words and found that the presence or absence of vowel epenthesis depended on proficiency. The results indicate that: (1) English word pronunciation by low-proficient Japanese English bilinguals is likely based on their L1 (Japanese) building block and (2) that future studies would benefit from analyzing the acoustic data as well when making inferences from chronometric data
59Co-NQR study on superconducting NaxCoO2.yH2O
Layered Co oxide NaxCoO2.yH2O with a superconducting transition temperature
Tc =4.5 K has been studied by 59Co NQR. The nuclear spin relaxation rate 1/59T1
is nearly proportional to temperature T in the normal state. In the
superconducting state, it exhibits the coherence peak and decreases with
decreasing T below ~0.8Tc. Detailed comparison of the 1/T1T values and the
magnetic susceptibilities between NaxCoO2.yH2O and NaxCoO2 implies that the
metallic state of the former system is closer to a ferromagnetic phase than
that of the latter. These experimental results impose a restriction on the
mechanism of the superconductivity.Comment: 7 pages, 5 figures. to be published in J. Phys. Soc. Jpn. 72 (2003)
No.
New connection formulae for some q-orthogonal polynomials in q-Askey scheme
New nonlinear connection formulae of the q-orthogonal polynomials, such
continuous q-Laguerre, continuous big q-Hermite, q-Meixner-Pollaczek and
q-Gegenbauer polynomials, in terms of their respective classical analogues are
obtained using a special realization of the q-exponential function as infinite
multiplicative series of ordinary exponential function
Analysis of relative influence of nodes in directed networks
Many complex networks are described by directed links; in such networks, a
link represents, for example, the control of one node over the other node or
unidirectional information flows. Some centrality measures are used to
determine the relative importance of nodes specifically in directed networks.
We analyze such a centrality measure called the influence. The influence
represents the importance of nodes in various dynamics such as synchronization,
evolutionary dynamics, random walk, and social dynamics. We analytically
calculate the influence in various networks, including directed multipartite
networks and a directed version of the Watts-Strogatz small-world network. The
global properties of networks such as hierarchy and position of shortcuts,
rather than local properties of the nodes, such as the degree, are shown to be
the chief determinants of the influence of nodes in many cases. The developed
method is also applicable to the calculation of the PageRank. We also
numerically show that in a coupled oscillator system, the threshold for
entrainment by a pacemaker is low when the pacemaker is placed on influential
nodes. For a type of random network, the analytically derived threshold is
approximately equal to the inverse of the influence. We numerically show that
this relationship also holds true in a random scale-free network and a neural
network.Comment: 9 figure
- …