50 research outputs found

    Analytic hierarchy process (AHP) based materials selection system for natural fiber as reinforcement in biopolymer composites for food packaging

    Get PDF
    The biodegradability of a material has been an important measure in packaging design. Green biocomposites, which are made of natural fiber and biopolymer matrix, are promising alternative materials in single-use packaging to replace conventional materials. Selection of the most suitable natural fiber for reinforcement in green biocomposites is an initial attempt towards reducing resources depletion and packaging waste dumping. A selection system of analytic hierarchy process (AHP)-based method is proposed. Food packaging materials’ requirements and production factors are the basis of selecting 13 vital characteristics of natural fibers as the selection criteria. Nine natural fibers were assessed based on data gathered from recent literature. From the results, ijuk obtained the highest priority score (14%). Whilst, sisal had the lowest rank with a score of 8.8%. Sensitivity analysis was then performed to further validate the results, and ijuk remained at the top rank in four out of the six scenarios tested. It was concluded that ijuk is the most suitable natural fiber for reinforcement in green biocomposites for food packaging design. Nonetheless, for future development, more comprehensive selection criteria, such as fiber specific properties, fiber processing, and fibre treatment, are suggested to be included in the framework for more comprehensive results

    The eye speaks! decoding user experience through eye tracking of syntactical properties analysis for cultural artefact

    Get PDF
    Background: An artefact usage experience is able to provide a tremendous input on behavioural research. This paper presents about a computational methodology of eye tracking to lead designers and behavioural researchers to construct an effective procedure ensuring the excavation of user knowledge. Objectives: Our research highlights the potential for designers and behavioural researchers on using eye tracking test on for capturing user‟s knowledge of functional aesthetic as cognitive and behavioural ergonomic data for the said artefacts. The eye tracking instrument was introduced to capture the aesthetic experience knowledge of Malay cultural artefact for defining artefact behavioural experience (usage) based on the user‟s eye movements. Results: Results from a qualitative case study was performed demonstrated the use of eye tracking on studying the traditional Malay curvy weapon known as Lawi Ayam through the identification of the syntactic properties. Results from the eye tracking data (fixation data, heat map visualization, gaze plot and RTE feedbacks) on AOI(area of interest)was used to discover the interrelationship between user and artefact(stimuli). A dynamic observation during the identification process by the users in the eye tracking could reveal behavioural responses and eye movement information including the proprioceptive feedback from artefact usage experience. Conclusion: This study finds that the eye tracking method can be integrated in cultural artefact research to sustain tacit knowledge for new designing purposes

    Natural fibre filament for Fused Deposition Modelling (FDM): a review

    Get PDF
    Fused Deposition Modelling (FDM) gets the most attention in development and manufacturing industries. The demand for FDM in industries increases gradually over time and attracts many researchers to enhance the quality of the FDM’s fillers. The most popular filler reinforcements in use are synthetic or carbon fibre. However, these fibres are harmful to the environment. To overcome the issue and replace the current fibres and achieve the bio-composites filler, researchers suggested using natural fibre to replace the synthetic and carbon fibres as the reinforcement, which is also combined with bio-polymer matrix such as thermoplastics as the polymer matrix in FDM’s industries. Many experiments and tests are conducted to prove the capability of the natural fibre as the main material in composite industries. FDM is a world-wide technology that aims to be environmentally friendly, thus, this paper focuses on biodegradable fillers for FDM

    Soil disturbance under small harvester traffic in paddy‐based smallholder farms in China

    Get PDF
    Machine‐induced soil disturbance may negatively impact the sustainability of a smallholder farming system. On‐farm studies at 143 fields were conducted over three crop seasons with the goal of quantifying the effect of soil disturbance on rice (Oryza sativa L.) paddy productivity induced by small harvesters (i.e., power <75 kW, weight < 3.5 Mg, and working width <2200 mm). A field survey toolbox containing fine‐layered cone penetration test, soil micro‐relief measurement, soil physics test (water content, bulk density, and porosity), documentation of field attributes, harvesters’ technical specifications, cropping systems, and farmers’ practices was used for field observation. Results showed that harvester traffic increased soil bulk density and decreased soil porosity. However, harvester‐induced soil changes in statistics were not detected. In addition, trafficked lanes had great soil strength (P = .05) than non‐trafficked lanes, and equipment induced compaction was limited to the surface 150 mm. Therefore, small harvesters minimized subsurface soil damage. However, regardless of the model and specification, all harvesters caused ruts. Small field sizes, irregular field shapes, inconsistent field management practices, lacking soil protection awareness, excessive soil water content during rice harvesting and random field traffic were identified as major factors aggravating soil disturbance. Above these, several well‐established approaches to alleviate machine‐induced soil damage were also observed during the field survey, including pre‐harvesting drainage, floating chassis, ultra‐narrow wheels, and puddling

    Effectiveness of the EMPOWER-PAR Intervention in Improving Clinical Outcomes of Type 2 Diabetes Mellitus in Primary Care: A Pragmatic Cluster Randomised Controlled Trial

    Full text link

    Canagliflozin and renal outcomes in type 2 diabetes and nephropathy

    Get PDF
    BACKGROUND Type 2 diabetes mellitus is the leading cause of kidney failure worldwide, but few effective long-term treatments are available. In cardiovascular trials of inhibitors of sodium–glucose cotransporter 2 (SGLT2), exploratory results have suggested that such drugs may improve renal outcomes in patients with type 2 diabetes. METHODS In this double-blind, randomized trial, we assigned patients with type 2 diabetes and albuminuric chronic kidney disease to receive canagliflozin, an oral SGLT2 inhibitor, at a dose of 100 mg daily or placebo. All the patients had an estimated glomerular filtration rate (GFR) of 30 to &lt;90 ml per minute per 1.73 m2 of body-surface area and albuminuria (ratio of albumin [mg] to creatinine [g], &gt;300 to 5000) and were treated with renin–angiotensin system blockade. The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained estimated GFR of &lt;15 ml per minute per 1.73 m2), a doubling of the serum creatinine level, or death from renal or cardiovascular causes. Prespecified secondary outcomes were tested hierarchically. RESULTS The trial was stopped early after a planned interim analysis on the recommendation of the data and safety monitoring committee. At that time, 4401 patients had undergone randomization, with a median follow-up of 2.62 years. The relative risk of the primary outcome was 30% lower in the canagliflozin group than in the placebo group, with event rates of 43.2 and 61.2 per 1000 patient-years, respectively (hazard ratio, 0.70; 95% confidence interval [CI], 0.59 to 0.82; P=0.00001). The relative risk of the renal-specific composite of end-stage kidney disease, a doubling of the creatinine level, or death from renal causes was lower by 34% (hazard ratio, 0.66; 95% CI, 0.53 to 0.81; P&lt;0.001), and the relative risk of end-stage kidney disease was lower by 32% (hazard ratio, 0.68; 95% CI, 0.54 to 0.86; P=0.002). The canagliflozin group also had a lower risk of cardiovascular death, myocardial infarction, or stroke (hazard ratio, 0.80; 95% CI, 0.67 to 0.95; P=0.01) and hospitalization for heart failure (hazard ratio, 0.61; 95% CI, 0.47 to 0.80; P&lt;0.001). There were no significant differences in rates of amputation or fracture. CONCLUSIONS In patients with type 2 diabetes and kidney disease, the risk of kidney failure and cardiovascular events was lower in the canagliflozin group than in the placebo group at a median follow-up of 2.62 years

    Product development of sugar palm composites: from concept to fabrication

    Get PDF
    Chapter 11 presents the development process relating to the conceptual design of sugar palm fibre-reinforced polymer matrix composites. The conceptual design is performed by employing several design tools, including Analytic Hierarchy Process (AHP) and three-phase Quality Function Deployment for Environment (QFDE), weighted objective evaluation method, Morphological Chart, Theory of Inventive Problem Solving (TRIZ) and Blue Ocean Strategy (BOS). Material selection is performed initially by using multi-criteria decision making tools such as AHP and QFDE. Both of these tools suggest the most suitable natural fibre and polymer matrix for the sugar palm fibre-reinforced polymer matrix composites. Prior to this, market investigation is conducted to obtain specific requirements of sugar palm-based products. Application of sugar palm fibre-reinforced polymer matrix composites can be found in the development of boats, tables and automotive anti-roll bars, as the sugar palm fibre is the most suitable natural fibre for these types of applications. In summary, the design process of natural fibre composite-based product should be incorporated with the total design method in order to obtain the optimum design solution. In this study, the design process is limited at the conceptual stage and further study must be conducted, including detailed simulations and experiment

    Wnioskowanie statystyczne w wyborze materiału osnowy polimerowej kompozytów z włóknami naturalnymi

    No full text
    In this paper, statistical inferences in material selection of polymer matrix for natural fiber composite are presented. Hypothesis testing and confidence interval were used to evaluate the suitability of the sample for use as a matrix in natural fiber reinforced composites. The screening process for material selection was carried out using a stepwise regression method. Then, the ranking process in material selection was conducted using an estimation of performance score (PS) for mechanical properties such as impact strength (IS), elongation at break (E) and tensile strength (TS). Ten types of polymer were involved in the study. The final selection revealed that polyamide (PA6), polyurethanes (PUR) and polypropylene (PP) are the potential candidates to manufacture hand-brake levers according to IS, E and TS, respectively. Here, it was found that the score for Tp (thermoplastic) is better than Ts (thermoset) in terms of IS. In contrast, the Ts offered a better score result than, Tp, with respect to E and TS. The results of statistical measurements using statistical modelling prove that the data analysis can be used as a part of the decision making in material selection.Opisano wnioskowanie statystyczne dotyczące wyboru materiału osnowy polimerowej kompozytu z włóknami naturalnymi. Testy hipotez statystycznych i przyjęte przedziały ufności służyły do oceny próbki pod względem przydatności do zastosowania w charakterze osnowy polimerowej w kompozycie wzmocnionym włóknem naturalnym. Selekcji materiałów dokonano przy użyciu metody regresji krokowej, następnie uszeregowano wybrane materiały z wykorzystaniem rankingu oceny (PS) właściwości mechanicznych, takich jak: udarność (IS), wydłużenie przy zerwaniu (E) i wytrzymałość na rozciąganie (TS). Wyselekcjonowano wstępnie 10 rodzajów polimerów zaliczanych do grup polimerów termoplastycznych (Tp) i termoutwardzalnych (Ts). Wnioskowanie statystyczne wykazało, że poliamid (PA6), poliuretany (PUR) i polipropylen (PP) są potencjalnie korzystnymi osnowami polimerowymi do wytwarzania dźwigni hamulca ręcznego. Stwierdzono, że polimery z grupy Tp wykazują lepszą udarność niż polimery z grupy Ts. Natomiast materiały Ts charakteryzują korzystniejsze wartości wydłużenia przy zerwaniu i wytrzymałości na rozciąganie niż ich odpowiedniki z grupy Tp. Wyniki przeprowadzonej analizy danych z zastosowaniem modelowania statystycznego dowodzą, że metoda ta może być pomocna przy wyborze materiału odpowiedniego do planowanej aplikacji
    corecore