37 research outputs found

    A proteomic investigation of soluble olfactory proteins in Anopheles gambiae

    Get PDF
    Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are small soluble polypeptides that bind semiochemicals in the lymph of insect chemosensilla. In the genome of Anopheles gambiae, 66 genes encode OBPs and 8 encode CSPs. Here we monitored their expression through classical proteomics (2D gel-MS analysis) and a shotgun approach. The latter method proved much more sensitive and therefore more suitable for tiny biological samples as mosquitoes antennae and eggs. Females express a larger number and higher quantities of OBPs in their antennae than males (24 vs 19). OBP9 is the most abundant in the antennae of both sexes, as well as in larvae, pupae and eggs. Of the 8 CSPs, 4 were detected in antennae, while SAP3 was the only one expressed in larvae. Our proteomic results are in fairly good agreement with data of RNA expression reported in the literature, except for OBP4 and OBP5, that we could not identify in our analysis, nor could we detect in Western Blot experiments. The relatively limited number of soluble olfactory proteins expressed at relatively high levels in mosquitoes makes further studies on the coding of chemical messages at the OBP level more accessible, providing for few specific targets. Identification of such proteins in Anopheles gambiae might facilitate future studies on host finding behavior in this important disease vector. © 2013 Mastrobuoni et al

    RC3H1 post-transcriptionally regulates A20 mRNA and modulates the activity of the IKK/NF-kappa B pathway

    Get PDF
    The RNA-binding protein RC3H1 (also known as ROQUIN) promotes TNF alpha mRNA decay via a 3'UTR constitutive decay element (CDE). Here we applied PAR-CLIP to human RC3H1 to identify similar to 3, 800 mRNA targets with 416, 000 binding sites. A large number of sites are distinct from the consensus CDE and revealed a structure-sequence motif with U-rich sequences embedded in hairpins. RC3H1 binds preferentially short-lived and DNA damage-induced mRNAs, indicating a role of this RNA-binding protein in the post-transcriptional regulation of the DNA damage response. Intriguingly, RC3H1 affects expression of the NF-kappa B pathway regulators such as I kappa B alpha and A20. RC3H1 uses ROQ and Zn-finger domains to contact a binding site in the A20 30UTR, demonstrating a not yet recognized mode of RC3H1 binding. Knockdown of RC3H1 resulted in increased A20 protein expression, thereby interfering with I kappa B kinase and NF-kappa B activities, demonstrating that RC3H1 can modulate the activity of the IKK/NF-kappa B pathway

    Inhibiting phosphoglycerate dehydrogenase counteracts chemotherapeutic efficacy against MYCN‐amplified neuroblastoma

    Get PDF
    Here we sought metabolic alterations specifically associated with MYCN amplification as nodes to indirectly target the MYCN oncogene. Liquid chromatography-mass spectrometry-based proteomics identified seven proteins consistently correlated with MYCN in proteomes from 49 neuroblastoma biopsies and 13 cell lines. Among these was phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in de novo serine synthesis. MYCN associated with two regions in the PHGDH promoter, supporting transcriptional PHGDH regulation by MYCN. Pulsed stable isotope-resolved metabolomics utilizing C-13-glucose labeling demonstrated higher de novo serine synthesis in MYCN-amplified cells compared to cells with diploid MYCN. An independence of MYCN-amplified cells from exogenous serine and glycine was demonstrated by serine and glycine starvation, which attenuated nucleotide pools and proliferation only in cells with diploid MYCN but did not diminish these endpoints in MYCN-amplified cells. Proliferation was attenuated in MYCN-amplified cells by CRISPR/Cas9-mediated PHGDH knockout or treatment with PHGDH small molecule inhibitors without affecting cell viability. PHGDH inhibitors administered as single-agent therapy to NOG mice harboring patient-derived MYCN-amplified neuroblastoma xenografts slowed tumor growth. However, combining a PHGDH inhibitor with the standard-of-care chemotherapy drug, cisplatin, revealed antagonism of chemotherapy efficacy in vivo. Emergence of chemotherapy resistance was confirmed in the genetic PHGDH knockout model in vitro. Altogether, PHGDH knockout or inhibition by small molecules consistently slows proliferation, but stops short of killing the cells, which then establish resistance to classical chemotherapy. Although PHGDH inhibition with small molecules has produced encouraging results in other preclinical cancer models, this approach has limited attractiveness for patients with neuroblastoma

    Linking disaster risk reduction, climate change, and the sustainable development goals

    Get PDF
    PURPOSE: The purpose of this paper is to better link the parallel processes yielding international agreements on climate change, disaster risk reduction, and sustainable development. DESIGN/METHODOLOGY/APPROACH: This paper explores how the Paris Agreement for climate change relates to disaster risk reduction and sustainable development, demonstrating too much separation amongst the topics. A resolution is provided through placing climate change within wider disaster risk reduction and sustainable development contexts. FINDINGS: No reason exists for climate change to be separated from wider disaster risk reduction and sustainable development processes. RESEARCH LIMITATIONS/IMPLICATIONS: Based on the research, a conceptual approach for policy and practice is provided. Due to entrenched territory, the research approach is unlikely to be implemented. ORIGINALITY/VALUE: Using a scientific basis to propose an ending for the silos separating international processes for climate change, disaster risk reduction, and sustainable development

    C/EBP beta-LIP induces cancer-type metabolic reprogramming by regulating the let-7/LIN28B circuit in mice

    Get PDF
    The transcription factors LAP1, LAP2 and LIP are derived from the Cebpb-mRNA through the use of alternative start codons. High LIP expression has been associated with human cancer and increased cancer incidence in mice. However, how LIP contributes to cellular transformation is poorly understood. Here we present that LIP induces aerobic glycolysis and mitochondrial respiration reminiscent of cancer metabolism. We show that LIP-induced metabolic programming is dependent on the RNA-binding protein LIN28B, a translational regulator of glycolytic and mitochondrial enzymes with known oncogenic function. LIP activates LIN28B through repression of the let-7 microRNA family that targets the Lin28b-mRNA. Transgenic mice overexpressing LIP have reduced levels of let-7 and increased LIN28B expression, which is associated with metabolic reprogramming as shown in primary bone marrow cells, and with hyperplasia in the skin. This study establishes LIP as an inducer of cancer-type metabolic reprogramming and as a regulator of the let-7/LIN28B regulatory circuit

    Integrative functional genomics decodes herpes simplex virus 1

    Get PDF
    Funder: Alexander von Humboldt-Stiftung (Alexander von Humboldt Foundation); doi: https://doi.org/10.13039/100005156Abstract: The predicted 80 open reading frames (ORFs) of herpes simplex virus 1 (HSV-1) have been intensively studied for decades. Here, we unravel the complete viral transcriptome and translatome during lytic infection with base-pair resolution by computational integration of multi-omics data. We identify a total of 201 transcripts and 284 ORFs including all known and 46 novel large ORFs. This includes a so far unknown ORF in the locus deleted in the FDA-approved oncolytic virus Imlygic. Multiple transcript isoforms expressed from individual gene loci explain translation of the vast majority of ORFs as well as N-terminal extensions (NTEs) and truncations. We show that NTEs with non-canonical start codons govern the subcellular protein localization and packaging of key viral regulators and structural proteins. We extend the current nomenclature to include all viral gene products and provide a genome browser that visualizes all the obtained data from whole genome to single-nucleotide resolution

    Mass Spectrometry as a tool in Structural Biology

    Get PDF

    Proteomics Quality Control: Quality Control Software for MaxQuant Results

    No full text
    Mass spectrometry-based proteomics coupled to liquid chromatography has matured into an automatized, high-throughput technology, producing data on the scale of multiple gigabytes per instrument per day. Consequently, an automated quality control (QC) and quality analysis (QA) capable of detecting measurement bias, verifying consistency, and avoiding propagation of error is paramount for instrument operators and scientists in charge of downstream analysis. We have developed an R-based QC pipeline called Proteomics Quality Control (PTXQC) for bottom-up LC–MS data generated by the MaxQuant software pipeline. PTXQC creates a QC report containing a comprehensive and powerful set of QC metrics, augmented with automated scoring functions. The automated scores are collated to create an overview heatmap at the beginning of the report, giving valuable guidance also to nonspecialists. Our software supports a wide range of experimental designs, including stable isotope labeling by amino acids in cell culture (SILAC), tandem mass tags (TMT), and label-free data. Furthermore, we introduce new metrics to score MaxQuant’s Match-between-runs (MBR) functionality by which peptide identifications can be transferred across Raw files based on accurate retention time and <i>m</i>/<i>z</i>. Last but not least, PTXQC is easy to install and use and represents the first QC software capable of processing MaxQuant result tables. PTXQC is freely available at https://github.com/cbielow/PTXQC
    corecore