1,010 research outputs found

    Historical review of efforts to reduce noise‐induced hearing loss in the United States

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137565/1/ajim22627.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/137565/2/ajim22627_am.pd

    Orthopaedic management of Hurler’s disease after hematopoietic stem cell transplantation: a systematic review

    Get PDF
    The introduction of hematopoietic stem cell transplantation (HSCT) has significantly improved the life-span of Hurler patients (mucopolysaccharidosis type I-H, MPS I-H). Yet, the musculoskeletal manifestations seem largely unresponsive to HSCT. In order to facilitate evidence based management, the aim of the current study was to give a systematic overview of the orthopaedic complications and motor functioning of Hurler's patients after HSCT. A systematic review was conducted of the medical literature published from January 1981 to June 2010. Two reviewers independently assessed all eligible citations, as identified from the Pubmed and Embase databases. A pre-developed data extraction form was used to systematically collect information on the prevalence of radiological and clinical signs, and on the orthopaedic treatments and outcomes. A total of 32 studies, including 399 patient reports were identified. The most frequent musculoskeletal abnormalities were odontoid hypoplasia (72%), thoracolumbar kyphosis (81%), genu valgum (70%), hip dysplasia (90%) and carpal tunnel syndrome (63%), which were often treated surgically during the first decade of life. The overall complication rate of surgical interventions was 13.5%. Motor functioning was further hampered due to reduced joint mobility, hand dexterity, motor development and longitudinal growth. Stem cell transplantation does not halt the progression of a large range of disabling musculoskeletal abnormalities in Hurler's disease. Although prospective data on the quantification, progression and treatment of these deformities were very limited, early surgical intervention is often advocated. Prospective data collection will be mandatory to achieve better evidence on the effect of treatment strategies

    Nutlin-3, the small-molecule inhibitor of MDM2, promotes senescence and radiosensitises laryngeal carcinoma cells harbouring wild-type p53

    Get PDF
    BACKGROUND: Primary radiotherapy (RT) is a mainstay of treatment for laryngeal squamous cell carcinoma (LSCC). Although the cure rates for early (T1) vocal cord tumours are high, RT proves ineffective in up to a third of T3 carcinomas. Moreover, RT is associated with debilitating early- and late-treatment-related toxicity, thus finding means to de-escalate therapy, while retaining/augmenting therapeutic effectiveness, is highly desirable. p53 is a key mediator of radiation responses; we therefore investigated whether Nutlin-3, a small-molecule inhibitor of MDM2 (mouse double minute 2; an essential negative regulator of p53), might radiosensitise LSCC cells. METHODS: We performed clonogenic assays to measure radiosensitivity in a panel of LSCC cell lines (for which we determined p53 mutational status) in the presence and absence of Nutlin-3. RESULTS: LSCC cells harbouring wild-type p53 were significantly radiosensitised by Nutlin-3 (P<0.0001; log-rank scale), and displayed increased cell cycle arrest and significantly increased senescence (P<0.001) in the absence of increased apoptosis; thus, our data suggest that senescence may mediate this increased radiosensitivity. CONCLUSION: This is the first study showing Nutlin-3 as an effective radiosensitiser in LSCC cells that retain wild-type p53. The clinical application of Nutlin-3 might improve local recurrence rates or allow treatment de-escalation in these patients

    Treatment of Infected Hip Arthroplasty

    Get PDF
    The clinical outcomes of a consecutive series of deep total joint infections treated with a prosthesis retaining protocol were reviewed. The treatment of deep periprosthetic joint infections is challenging. In recent years, two-stage exchange arthroplasty has emerged as the gold standard for successful elimination of infection. With success rates averaging 82% to 96%, this treatment method has both the highest and most consistent rate of infection eradication. Another alternative in the treatment of the deep periprosthetic infection is the single-stage exchange arthroplasty. Successful eradication of infection after single-stage exchange arthroplasty has been reported to average from 60% to 83% after total hip infections. While both the single and two-stage exchange arthroplasty are viable treatment options, they are associated with negative factors such as they are time consuming, expensive, and may entail a 6- to 12-week period with a minimally functioning extremity after prosthesis removal. This paper reports the general principles of management, the treatment of acute infection occurring in the postoperative period or later, and the treatment of chronic infection by exchange arthroplasty or resection arthroplasty

    Skeletal Muscle Pump Drives Control of Cardiovascular and Postural Systems

    Get PDF
    The causal interaction between cardio-postural-musculoskeletal systems is critical in maintaining postural stability under orthostatic challenge. The absence or reduction of such interactions could lead to fainting and falls often experienced by elderly individuals. The causal relationship between systolic blood pressure (SBP), calf electromyography (EMG), and resultant center of pressure (COPr) can quantify the behavior of cardio-postural control loop. Convergent cross mapping (CCM) is a non-linear approach to establish causality, thus, expected to decipher nonlinear causal cardio-postural-musculoskeletal interactions. Data were acquired simultaneously from young participants (25 ± 2 years, n = 18) during a 10-minute sit-to-stand test. In the young population, skeletal muscle pump was found to drive blood pressure control (EMG → SBP) as well as control the postural sway (EMG → COPr) through the significantly higher causal drive in the direction towards SBP and COPr. Furthermore, the effect of aging on muscle pump activation associated with blood pressure regulation was explored. Simultaneous EMG and SBP were acquired from elderly group (69 ± 4 years, n = 14). A significant (p = 0.002) decline in EMG → SBP causality was observed in the elderly group, compared to the young group. The results highlight the potential of causality to detect alteration in blood pressure regulation with age, thus, a potential clinical utility towards detection of fall proneness

    Response of a CMS HGCAL silicon-pad electromagnetic calorimeter prototype to 20-300 GeV positrons

    Full text link
    The Compact Muon Solenoid Collaboration is designing a new high-granularity endcap calorimeter, HGCAL, to be installed later this decade. As part of this development work, a prototype system was built, with an electromagnetic section consisting of 14 double-sided structures, providing 28 sampling layers. Each sampling layer has an hexagonal module, where a multipad large-area silicon sensor is glued between an electronics circuit board and a metal baseplate. The sensor pads of approximately 1 cm2^2 are wire-bonded to the circuit board and are readout by custom integrated circuits. The prototype was extensively tested with beams at CERN's Super Proton Synchrotron in 2018. Based on the data collected with beams of positrons, with energies ranging from 20 to 300 GeV, measurements of the energy resolution and linearity, the position and angular resolutions, and the shower shapes are presented and compared to a detailed Geant4 simulation

    Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20-300 GeV/c

    Full text link
    The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly readout by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data.Comment: To be submitted to JINS
    corecore