67 research outputs found
Being Moved by the Self and Others: Influence of Empathy on Self-Motion Perception
Background: The observation of conspecifics influences our bodily perceptions and actions: Contagious yawning, contagious itching, or empathy for pain, are all examples of mechanisms based on resonance between our own body and others. While there is evidence for the involvement of the mirror neuron system in the processing of motor, auditory and tactile information, it has not yet been associated with the perception of self-motion. Methodology/Principal Findings: We investigated whether viewing our own body, the body of another, and an object in motion influences self-motion perception. We found a visual-vestibular congruency effect for self-motion perception when observing self and object motion, and a reduction in this effect when observing someone else's body motion. The congruency effect was correlated with empathy scores, revealing the importance of empathy in mirroring mechanisms. Conclusions/Significance: The data show that vestibular perception is modulated by agent-specific mirroring mechanisms. The observation of conspecifics in motion is an essential component of social life, and self-motion perception is crucial for the distinction between the self and the other. Finally, our results hint at the presence of a “vestibular mirror neuron system”
Street crossing behavior in younger and older pedestrians: an eye- and head-tracking study
Background Crossing a street can be a very difficult task for older pedestrians. With increased age and potential cognitive decline, older people take the decision to cross a street primarily based on vehicles’ distance, and not on their speed. Furthermore, older pedestrians tend to overestimate their own walking speed, and could not adapt it according to the traffic conditions. Pedestrians’ behavior is often tested using virtual reality. Virtual reality presents the advantage of being safe, cost-effective, and allows using standardized test conditions. Methods This paper describes an observational study with older and younger adults. Street crossing behavior was investigated in 18 healthy, younger and 18 older subjects by using a virtual reality setting. The aim of the study was to measure behavioral data (such as eye and head movements) and to assess how the two age groups differ in terms of number of safe street crossings, virtual crashes, and missed street crossing opportunities. Street crossing behavior, eye and head movements, in older and younger subjects, were compared with non-parametric tests. Results The results showed that younger pedestrians behaved in a more secure manner while crossing a street, as compared to older people. The eye and head movements analysis revealed that older people looked more at the ground and less at the other side of the street to cross. Conclusions The less secure behavior in street crossing found in older pedestrians could be explained by their reduced cognitive and visual abilities, which, in turn, resulted in difficulties in the decision-making process, especially under time pressure. Decisions to cross a street are based on the distance of the oncoming cars, rather than their speed, for both groups. Older pedestrians look more at their feet, probably because of their need of more time to plan precise stepping movement and, in turn, pay less attention to the traffic. This might help to set up guidelines for improving senior pedestrians’ safety, in terms of speed limits, road design, and mixed physical-cognitive trainings
Deep neural network-based clustering of deformation curves reveals novel disease features in PLN pathogenic variant carriers
Echocardiographic deformation curves provide detailed information on myocardial function. Deep neural networks (DNNs) may enable automated detection of disease features in deformation curves, and improve the clinical assessment of these curves. We aimed to investigate whether an explainable DNN-based pipeline can be used to detect and visualize disease features in echocardiographic deformation curves of phospholamban (PLN) p.Arg14del variant carriers. A DNN was trained to discriminate PLN variant carriers (n = 278) from control subjects (n = 621) using raw deformation curves obtained by 2D-speckle tracking in the longitudinal axis. A visualization technique was used to identify the parts of these curves that were used by the DNN for classification. The PLN variant carriers were clustered according to the output of the visualization technique. The DNN showed excellent discriminatory performance (C-statistic 0.93 [95% CI 0.87–0.97]). We identified four clusters with PLN-associated disease features in the deformation curves. Two clusters showed previously described features: apical post-systolic shortening and reduced systolic strain. The two other clusters revealed novel features, both reflecting delayed relaxation. Additionally, a fifth cluster was identified containing variant carriers without disease features in the deformation curves, who were classified as controls by the DNN. This latter cluster had a very benign disease course regarding development of ventricular arrhythmias. Applying an explainable DNN-based pipeline to myocardial deformation curves enables automated detection and visualization of disease features. In PLN variant carriers, we discovered novel disease features which may improve individual risk stratification. Applying this approach to other diseases will further expand our knowledge on disease-specific deformation patterns. Graphical abstract: [Figure not available: see fulltext.] Overview of the deep neural network-based pipeline for feature detection in myocardial deformation curves. Firstly, phospholamban (PLN) p.Arg14del variant carriers and controls were selected and a deep neural network (DNN) was trained to detect the PLN variant carriers. Subsequently, a clustering-based approach was performed on the attention maps of the DNN, which revealed 4 distinct phenotypes of PLN variant carriers with different prognoses. Moreover, a cluster without features and a benign prognosis was detected
Electrocardiogram-based mortality prediction in patients with COVID-19 using machine learning
Background and purpose: The electrocardiogram (ECG) is frequently obtained in the work-up of COVID-19 patients. So far, no study has evaluated whether ECG-based machine learning models have added value to predict in-hospital mortality specifically in COVID-19 patients. /
Methods: Using data from the CAPACITY-COVID registry, we studied 882 patients admitted with COVID-19 across seven hospitals in the Netherlands. Raw format 12-lead ECGs recorded within 72 h of admission were studied. With data from five hospitals (n = 634), three models were developed: (a) a logistic regression baseline model using age and sex, (b) a least absolute shrinkage and selection operator (LASSO) model using age, sex and human annotated ECG features, and (c) a pre-trained deep neural network (DNN) using age, sex and the raw ECG waveforms. Data from two hospitals (n = 248) was used for external validation. /
Results: Performances for models a, b and c were comparable with an area under the receiver operating curve of 0.73 (95% confidence interval [CI] 0.65–0.79), 0.76 (95% CI 0.68–0.82) and 0.77 (95% CI 0.70–0.83) respectively. Predictors of mortality in the LASSO model were age, low QRS voltage, ST depression, premature atrial complexes, sex, increased ventricular rate, and right bundle branch block. /
Conclusion: This study shows that the ECG-based prediction models could be helpful for the initial risk stratification of patients diagnosed with COVID-19, and that several ECG abnormalities are associated with in-hospital all-cause mortality of COVID-19 patients. Moreover, this proof-of-principle study shows that the use of pre-trained DNNs for ECG analysis does not underperform compared with time-consuming manual annotation of ECG features
The Netherlands Arrhythmogenic Cardiomyopathy Registry: design and status update
Background
Clinical research on arrhythmogenic cardiomyopathy (ACM) is typically limited by small patient numbers, retrospective study designs, and inconsistent definitions.
Aim
To create a large national ACM patient cohort with a vast amount of uniformly collected high-quality data that is readily available for future research.
Methods
This is a multicentre, longitudinal, observational cohort study that includes (1) patients with a definite ACM diagnosis, (2) at-risk relatives of ACM patients, and (3) ACM-associated mutation carriers. At baseline and every follow-up visit, a medical history as well information regarding (non-)invasive tests is collected (e. g. electrocardiograms, Holter recordings, imaging and electrophysiological studies, pathology reports, etc.). Outcome data include (non-)sustained ventricular and atrial arrhythmias, heart failure, and (cardiac) death. Data are collected on a research electronic data capture (REDCap) platform in which every participating centre has its own restricted data access group, thus empowering local studies while facilitating data sharing.
Discussion
The Netherlands ACM Registry is a national observational cohort study of ACM patients and relatives. Prospective and retrospective data are obtained at multiple time points, enabling both cross-sectional and longitudinal research in a hypothesis-generating approach that extends beyond one specific research question. In so doing, this registry aims to (1) increase the scientific knowledge base on disease mechanisms, genetics, and novel diagnostic and treatment strategies of ACM; and (2) provide education for physicians and patients concerning ACM, e. g. through our website (www.acmregistry.nl) and patient conferences
Gender and line size factors modulate the deviations of the subjective visual vertical induced by head tilt
<p>Abstract</p> <p>Background</p> <p>The subjective visual vertical (SVV, the visual estimation of gravitational direction) is commonly considered as an indicator of the sense of orientation. The present study examined the impact of two methodological factors (the angle size of the stimulus and the participant's gender) on deviations of the SVV caused by head tilt. Forty healthy participants (20 men and 20 women) were asked to make visual vertical adjustments of a light bar with their head held vertically or roll-tilted by 30° to the left or to the right. Line angle sizes of 0.95° and 18.92° were presented.</p> <p>Results</p> <p>The SVV tended to move in the direction of head tilt in women but away from the direction of head tilt in men. Moreover, the head-tilt effect was also modulated by the stimulus' angle size. The large angle size led to deviations in the direction of head-tilt, whereas the small angle size had the opposite effect.</p> <p>Conclusions</p> <p>Our results showed that gender and line angle size have an impact on the evaluation of the SVV. These findings must be taken into account in the growing body of research that uses the SVV paradigm in disease settings. Moreover, this methodological issue may explain (at least in part) the discrepancies found in the literature on the head-tilt effect.</p
Embodied perspective-taking indicated by selective disruption from aberrant self motion
Spatial perspective-taking that involves imagined changes in one’s spatial orientation is facilitated by vestibular stimulation inducing a congruent sensation of self-motion. We examined further the role of vestibular resources in perspective-taking by evaluating whether aberrant and conflicting vestibular stimulation impaired perspective-taking performance. Participants (N = 39) undertook either an “own body transformation” (OBT)task, requiring speeded spatial judgments made from the perspective of a schematic figure, or a control task requiring reconfiguration of spatial mappings from one’s own visuo-spatial perspective. These tasks were performed both without and with vestibular stimulation by whole-body Coriolis motion, according to a repeated measures design, balanced for order. Vestibular stimulation was found to impair performance during the first minute post stimulus relative to the stationary condition. This disruption was task-specific, affecting only the OBT task and not the control task, and dissipated by the second minute post-stimulus. Our experiment thus demonstrates selective temporary impairment of perspective-taking from aberrant vestibular stimulation, implying that uncompromised vestibular resources are necessary for efficient perspective-taking. This finding provides evidence for an embodied mechanism for perspective-taking whereby vestibular input contributes to multisensory processing underlying bodily and social cognition. Ultimately, this knowledge may contribute to the design of interventions that help patients suffering sudden vertigo adapt to the cognitive difficulties caused by aberrant vestibular stimulation
Skin Regeneration in Adult Axolotls: A Blueprint for Scar-Free Healing in Vertebrates
While considerable progress has been made towards understanding the complex processes and pathways that regulate human wound healing, regenerative medicine has been unable to develop therapies that coax the natural wound environment to heal scar-free. The inability to induce perfect skin regeneration stems partly from our limited understanding of how scar-free healing occurs in a natural setting. Here we have investigated the wound repair process in adult axolotls and demonstrate that they are capable of perfectly repairing full thickness excisional wounds made on the flank. In the context of mammalian wound repair, our findings reveal a substantial reduction in hemostasis, reduced neutrophil infiltration and a relatively long delay in production of new extracellular matrix (ECM) during scar-free healing. Additionally, we test the hypothesis that metamorphosis leads to scarring and instead show that terrestrial axolotls also heal scar-free, albeit at a slower rate. Analysis of newly forming dermal ECM suggests that low levels of fibronectin and high levels of tenascin-C promote regeneration in lieu of scarring. Lastly, a genetic analysis during wound healing comparing epidermis between aquatic and terrestrial axolotls suggests that matrix metalloproteinases may regulate the fibrotic response. Our findings outline a blueprint to understand the cellular and molecular mechanisms coordinating scar-free healing that will be useful towards elucidating new regenerative therapies targeting fibrosis and wound repair
Spatial Distribution of the Pathways of Cholesterol Homeostasis in Human Retina
The retina is a light-sensitive tissue lining the inner surface of the eye and one of the few human organs whose cholesterol maintenance is still poorly understood. Challenges in studies of the retina include its complex multicellular and multilayered structure; unique cell types and functions; and specific physico-chemical environment.We isolated specimens of the neural retina (NR) and underlying retinal pigment epithelium (RPE)/choroid from six deceased human donors and evaluated them for expression of genes and proteins representing the major pathways of cholesterol input, output and regulation. Eighty-four genes were studied by PCR array, 16 genes were assessed by quantitative real time PCR, and 13 proteins were characterized by immunohistochemistry. Cholesterol distribution among different retinal layers was analyzed as well by histochemical staining with filipin. Our major findings pertain to two adjacent retinal layers: the photoreceptor outer segments of NR and the RPE. We demonstrate that in the photoreceptor outer segments, cholesterol biosynthesis, catabolism and regulation via LXR and SREBP are weak or absent and cholesterol content is the lowest of all retinal layers. Cholesterol maintenance in the RPE is different, yet the gene expression also does not appear to be regulated by the SREBPs and varies significantly among different individuals.This comprehensive investigation provides important insights into the relationship and spatial distribution of different pathways of cholesterol input, output and regulation in the NR-RPE region. The data obtained are important for deciphering the putative link between cholesterol and age-related macular degeneration, a major cause of irreversible vision loss in the elderly
- …