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Abstract
Echocardiographic deformation curves provide detailed information on myocardial function. Deep neural networks (DNNs) 
may enable automated detection of disease features in deformation curves, and improve the clinical assessment of these 
curves. We aimed to investigate whether an explainable DNN-based pipeline can be used to detect and visualize disease 
features in echocardiographic deformation curves of phospholamban (PLN) p.Arg14del variant carriers. A DNN was trained 
to discriminate PLN variant carriers (n = 278) from control subjects (n = 621) using raw deformation curves obtained by 
2D-speckle tracking in the longitudinal axis. A visualization technique was used to identify the parts of these curves that 
were used by the DNN for classification. The PLN variant carriers were clustered according to the output of the visualiza-
tion technique. The DNN showed excellent discriminatory performance (C-statistic 0.93 [95% CI 0.87–0.97]). We identified 
four clusters with PLN-associated disease features in the deformation curves. Two clusters showed previously described 
features: apical post-systolic shortening and reduced systolic strain. The two other clusters revealed novel features, both 
reflecting delayed relaxation. Additionally, a fifth cluster was identified containing variant carriers without disease features 
in the deformation curves, who were classified as controls by the DNN. This latter cluster had a very benign disease course 
regarding development of ventricular arrhythmias. Applying an explainable DNN-based pipeline to myocardial deformation 
curves enables automated detection and visualization of disease features. In PLN variant carriers, we discovered novel disease 
features which may improve individual risk stratification. Applying this approach to other diseases will further expand our 
knowledge on disease-specific deformation patterns.
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Graphical abstract

Overview of the deep neural network-based pipeline for feature detection in myocardial deformation curves. Firstly, phos-
pholamban (PLN) p.Arg14del variant carriers and controls were selected and a deep neural network (DNN) was trained to 
detect the PLN variant carriers. Subsequently, a clustering-based approach was performed on the attention maps of the DNN, 
which revealed 4 distinct phenotypes of PLN variant carriers with different prognoses. Moreover, a cluster without features 
and a benign prognosis was detected.

Keywords  Deep learning · Clustering · Deformation imaging · Strain · Phospholamban · Cardiomyopathy

Introduction

Mechanical deformation of the myocardium is the major 
determinant of cardiac function, and may be disrupted in a 
wide variety of cardiac diseases [1]. Changes in mechani-
cal myocardial behavior are often caused by structural 
myocardial changes such as fibrosis and may ultimately 
lead to ventricular dysfunction and heart failure. Besides 
patients with structural alterations, abnormal deformation 

has also been reported in patients without any clear-cut 
structural disease, such as asymptomatic subjects with a 
pathogenic genetic variant [2, 3]. Since the mechanical 
alterations in such individuals are thought to reflect early 
problems in electro-mechanical coupling or even disturbed 
intracellular processes, accurate quantification of myocar-
dial deformation may provide great insight into underlying 
disease processes.
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Several non-invasive techniques exist for quantification 
of myocardial deformation, of which echocardiography-
based 2D speckle tracking is now the most robust and 
most widely used technique [4]. The assessment of myo-
cardial deformation by this technique currently relies on 
manual extraction of certain parameters from the defor-
mation curve, such as peak strain. However, manual 
parameter extraction may lack sensitivity, especially for 
subtle disease processes where peak strain values fall 
within normal limits. Within a deformation curve, more 
valuable data may be concealed that we are not yet aware 
of [5]. An automatic method for detection of disease fea-
tures in the entire deformation curve would potentially 
enable better characterization of (subtle) mechanical dis-
ease processes, leading to improved detection of early 
disease and better risk stratification.

Deep neural networks (DNNs) are computer algo-
rithms based on the structure and function of the human 
brain. Their hidden layers of neurons can be trained to 
discover complex patterns in signals such as deformation 
curves. DNNs are increasingly applied to electrocardio-
grams (ECGs), which has led to both classification of 
ECGs with very high diagnostic accuracy and detection of 
novel ECG features [6, 7]. To date, DNNs have not been 
applied to deformation curves, while the deformation out-
put features are suitable for these analyses in a similar 
fashion as the ECG. We hypothesize that assessment of 
regional deformation curves by a DNN-based approach 
will provide insight into spatiotemporal disease features 
in the deformation curve which are not yet detected by the 
manual approach. Discovering novel patterns by such an 
automated approach could greatly enhance assessment of 
deformation curves in routine clinical practice, potentially 
improving (early) disease detection and individual risk 
stratification of patients.

In the present study, we developed an explainable 
DNN-based pipeline for classification of myocardial 
deformation curves. As a disease model, we included 
subjects with the pathogenic phospholamban (PLN) 
p.Arg14del variant, who are at high risk of developing 
dilated and/or arrhythmogenic cardiomyopathy (DCM/
ACM) [8]. All these subjects are descending from one 
single founder from the northern part of the Netherlands 
and have an identical haplotype [9]. In a previous study, 
we observed that regional post-systolic shortening in the 
left ventricular (LV) apical segments is a typical early 
deformation pattern in these subjects [3]. In advanced 
disease stages, we observed that global cardiac function 
becomes impaired and peak strain values are reduced. 
The goal of the current study was to investigate whether 
a DNN-based approach can be used to identify novel dis-
ease features that are concealed in the regional myocardial 

deformation curves of subjects with this particular genetic 
variant.

Methods

Data source and study participants

As described previously [3, 10], we selected PLN 
p.Arg14del variant carriers from a nationwide registry 
who underwent transthoracic echocardiography between 
2006 and 2019 in the University Medical Center Utrecht, 
University Medical Center Groningen and Amsterdam 
University Medical Center. These were both index patients 
and family members who were identified by genetic 
screening. While index patients underwent comprehen-
sive genetic testing for cardiomyopathy-related variants, 
family members underwent targeted testing for the PLN 
p.Arg14del variant as part of cascade family screening. 
Index patients with a second pathogenic cardiomyopathy-
related variant and subjects with relevant cardiovascular 
comorbidities such as hypertension were excluded. As 
defined previously, PLN p.Arg14del variant carriers were 
classified as pre-symptomatic in case they had no history 
of ventricular arrhythmias (VA), a premature ventricular 
complex (PVC) count < 500/24 h and left ventricular ejec-
tion fraction (LVEF) > 45% [3].

Controls were derived from the Flemish Study on Envi-
ronment, Genes and Health Outcomes (FLEMENGHO), 
which consists of a random population sample from a geo-
graphically defined area in Belgium [11]. The prevalence 
of the PLN p.Arg14del variant in this area was assumed 
to be negligible, as the prevalence of this founder variant 
decreases considerably towards the south [9]. We selected 
participants who underwent transthoracic echocardiogra-
phy between 2005 and 2009 [12].

For the training and testing of the algorithm, the PLN 
dataset was split in an 80:20 ratio on the subject level, to 
make sure no subjects appeared in both datasets (Fig. 1). 
To maximize the available data for training, multiple 
echocardiograms per subject were included when avail-
able. In the testing dataset, only the first echocardiogram 
was used, since follow-up echocardiograms may be more 
affected and may therefore bias the results of diagnostic 
performance. Every PLN subject in the testing dataset was 
matched to a control subject using propensity score match-
ing without replacement on age, sex and heart rate, since 
those parameters may significantly affect the deformation 
curves. All remaining control subjects were eligible for the 
training dataset. Propensity score matching was performed 
during training in a 1:3 PLN to control ratio to account for 
imbalances in the previously mentioned parameters.
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Data acquisition and preprocessing

All data used in this study were retrospectively acquired 
data. The data were anonymized and handled according to 
the European General Data Protection Regulation. Re-use 
of the data was permitted by the Medical Ethics Com-
mittee. For the PLN variant carriers, the echocardiograms 
were acquired using a Vivid 7, E9 or E95 machine (GE 
Healthcare, Horten, Norway) as part of routine clinical 
care. For the FLEMENGO control group, echocardio-
grams were acquired using a Vivid 7 machine by a single 
experienced physician [12]. Longitudinal strain analysis 

was performed with 2D speckle tracking by two operators 
using EchoPAC software (version 2.0.3., GE Healthcare) 
according to the current recommendations [13]. Only api-
cal four-chamber views were used in this analysis and were 
divided in six segments: apical, mid and basal segments 
from both the lateral and septal walls. The six regional 
deformation curves that were computed by the software 
were included in the deep learning model as raw data and 
normalized in time to 1 s, with the location of the aortic 
valve closure at 38% of the RR-interval (mean of the train-
ing data). Additional information of the data acquisition 
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Fig. 1   Methodology. PLN p.Arg14del variant carriers and control subjects were included for this study. After development of the DNN, the rel-
evance maps of the PLN variant carriers were derived and the variant carriers were clustered on the basis of these relevance maps
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and preprocessing can be found in the Supplemental 
Methods.

Model development and validation

We constructed a deep convolutional neural network with 
exponentially dilated causal convolutions, which is opti-
mized for use on time series such as electrocardiograms 
(ECGs) [6]. By using dilated causal convolutions, the net-
work can learn complex patterns across large segments of 
the waveform, while only regarding previous timepoints and 
therefore taking into account the temporal nature of the sig-
nal. The architecture has been described in more detail in the 
Supplemental Methods and an overview of the architecture 
can be found in Supplemental Fig. 1. Hyperparameters (i.e., 
number of feature maps, depth of the network, kernel size, 
dropout ratio, learning rate and batch size) were optimized 
in the training dataset using fivefold cross-validation, where 
complete PLN-control match groups were kept together dur-
ing the dataset split. The simplest network with the highest 
F1 score averaged over all five cross-validation folds was 
selected for testing. The independent test dataset was used 
once to assess the performance of the final optimized model. 
To estimate this final performance, all five trained networks 
(from the five different cross-validation splits) were used as 
an ensemble model, where the probability for each subject 
was obtained by taking the mean of these five models’ pre-
dicted probability.

Model visualization and feature identification

To identify the parts of the strain curves that were considered 
important by the model to classify PLN variant carriers, we 
used the Integrated Gradients visualization technique [14]. 
This approach was combined with SmoothGrad-Squared, 
since recent reports have shown this to be the most robust 
to produce individual relevance maps [15]. As phenotypical 
variability was expected for the PLN variant carriers, we 
performed a time series clustering approach on the relevance 
maps of the correctly predicted patients (i.e. with a predicted 
probability over 50%) in the complete dataset. K-means clus-
tering with the Euclidean distance metric was used to divide 
the normalized relevance maps into four different phenotype 
clusters. The clusters were visualized by taking the mean 
and standard deviation in the temporal axis of all patients 
in that cluster and superimposing the cluster centers of the 
relevance maps as a heatmap. A Savinsky-Golay filter was 
applied to each cluster center to smoothen the heat map. 
The number of clusters was defined empirically by visually 
assessing whether the clusters showed difference in their 
morphology, while keeping a minimum of 30 patients per 
cluster. The mean deformation curve per segment of all 
the control subjects was used as a reference in the figures. 

Additional information on the visualization technique can 
be found in the Supplemental Methods.

Follow‑up data

To explore the disease course among the different phenotype 
clusters, follow-up data of PLN variant carriers were derived 
from an electronic research data platform [10]. The primary 
outcome variable was sustained VA, which was defined as 
sudden cardiac arrest/ventricular fibrillation, appropriate 
implantable cardioverter defibrillator (ICD) intervention or 
any recorded sustained ventricular tachycardia (> 100 bpm) 
lasting more than 30 s.

Statistical analysis

Baseline data are expressed as mean ± standard deviation 
(SD) or median with interquartile range (IQR), where appro-
priate. Discriminatory performance of the deep learning 
model was assessed using the area under the receiver oper-
ating curve (AUC) or C-statistic, accuracy, F1-score, speci-
ficity and sensitivity. The 95% confidence intervals were 
derived using 2000 bootstrap samples. For the comparison 
of clinical characteristics between phenotype clusters, we 
performed Chi-square, one-way ANOVA or Kruskal–Wal-
lis tests as appropriate. Adjustment for multiple testing was 
performed using Bonferroni’s correction. The DNN-based 
classification of the deformation curves into clusters was 
compared to the manual classification of the deformation 
curves of this cohort in a previous paper [3]. All statistical 
analyses were performed using Python version 3.8 (Python 
Software Foundation).

Results

Study population

Overall, 278 PLN variant carriers were included, with a total 
of 419 echocardiograms (mean of 1.5 echocardiograms per 
patient). From the FLEMENGO cohort, 621 control subjects 
were included, with one echocardiogram per subject. Base-
line characteristics of the PLN variant carriers and control 
subjects (stratified by training and test set) can be found in 
Table 1.

Performance of deep learning algorithm

Cross-validated mean C-statistic, accuracy and F1 score 
on the training dataset were 0.93 ± 0.02, 0.93 ± 0.01, and 
0.86 ± 0.05, respectively. The performance of the ensemble 
model in the independent test set was excellent, with a 
C-statistic, accuracy, F1 score, sensitivity and specificity 
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at a 50% probability threshold of 0.93 [95% CI 0.87–0.97], 
0.90 [95% CI 0.85–0.96], 0.89 [95% CI 0.83–0.95], 
0.88 [95% CI 0.79–0.96] and 0.93 [95% CI 0.85–0.98], 
respectively.

Feature identification

Using the relevance maps generated by the Integrated Gra-
dients visualization technique, we identified four PLN phe-
notype clusters (clusters A to D, Fig. 2). Cluster O is an 
additional cluster which represents the PLN variant carriers 
without any disease features in the deformation curve, who 
were classified as controls by the DNN (n = 27).

As shown in Fig. 2, the features that were considered 
most important by the DNN for classification of PLN vari-
ant carriers were located in the apical septal segments, mid 
septal segments and apical lateral segments. Temporally, 
these features were particularly located at end-systole and 
in the early diastolic phase. Figure 3 shows representative 
examples of subjects from each cluster. In clusters A, B and 
C the relevance maps demonstrated different patterns of 
delayed relaxation in the apical segments. In cluster A, the 
deformation curves consisted of one single systolic peak, 
with a notch during the normal upstroke of the curve after 
aortic valve closure in the septal apical segment (type A 
pattern: ‘diastolic notch’, Fig. 3A). Importantly, the deforma-
tion curves in this cluster did not show additional shortening 
after aortic valve closure. By manual classification, 47 of 
the subjects in cluster A (56%) were previously classified as 
having normal deformation curves in the apical segments. 
In cluster B, there were two peaks of shortening in the septal 
apical segment, of which the first peak occurred before or at 
aortic valve closure, and the second peak after aortic valve 
closure (type B pattern: ‘double peak’, Fig. 3B). By manual 
classification, 25 subjects in cluster B (56%) were previously 
classified as having normal deformation curves in the api-
cal segments. In cluster C, the deformation curves showed 
pronounced post-systolic shortening in the apical segments 
(type C pattern: ‘post-systolic shortening’, Fig. 3C). The 
relevance maps in this cluster focused specifically on dias-
tolic upstroke of the deformation curve in the apical and mid 
septal segment, where high diastolic strain rate values were 
found (Supplemental Table 1). By manual classification, 
36 subjects in cluster C (54%) were previously classified as 
having normal deformation curves in the apical segments. 
The deformation curves in cluster D were characterized by 
decreased systolic peak strain values, which was considered 
most important in the septal and lateral apical segments 
(type D pattern: ‘reduced peak strain’, Fig. 3D). By manual 
classification, all subjects in cluster D were previously clas-
sified as having abnormal deformation curves in the apical 
segments.Ta
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Clinical cluster characteristics

Additional clinical data of the phenotype clusters can be 
found in Table 2. Subjects in cluster O, who were recog-
nized as controls by the DNN, were relatively young (36 
[IQR 27–46] years), were all identified by family screening 
and the majority was pre-symptomatic (n = 22, 82%). Con-
ventional echocardiographic measurements in this cluster 
were without exception within normal limits. Subjects in 
cluster A were older than subjects in cluster O (40 [IQR 
24–53], but still had normal conventional echocardiographic 
measurements. Subjects in cluster B were older than subjects 
in cluster A (46 [IQR 34–64] years) with slightly reduced 
relaxation parameters (E-wave velocity and e’). All other 
conventional parameters in this cluster were preserved. The 
subjects in cluster A and B both had more electrical disease 
expression compared to cluster O with regard to T-wave 
inversions, low QRS voltages, VA history and PVC burden 
per 24 h (Table 2). Subjects in cluster C were the youngest 
of all clusters (36 [IQR 24–44] years), and were character-
ized by relatively high LV end-diastolic and end-systolic 
volumes (58.3 [IQR 52.9–65.8]  ml/m2 and 24.7 [IQR 
20.8–27.9] ml/m2, respectively) and a particularly high rate 
of low QRS voltages (38.1%). Finally, cluster D consisted 
of the oldest subjects (54 [IQR 43–61] years) with the most 
advanced disease, with high rates of heart failure and VA, 
and severely impaired conventional echocardiographic LV 
and RV measurements.

Follow‑up data

Follow-up data was available for 240/278 PLN variant carri-
ers (86%). During a median follow-up duration of 3.0 years 
[IQR 1.4–5.2 years], 34 patients (14%) experienced the sus-
tained VA endpoint. These were 4 (5%) from cluster A, 3 
(8%) from cluster B, 4 (7%) from cluster C and 23 (46%) 
from cluster D. None of the subjects that were allocated to 
cluster O experienced a sustained arrhythmia during follow-
up. Figure 4 shows the Kaplan–Meier curves for this end-
point, stratified by the phenotype clusters.

Discussion

This study is the first one to use a DNN for discovery of 
novel disease features in myocardial deformation curves. 
By using a completely novel pipeline for deformation 
curves that combines an explainable DNN with a clustering 
approach, we were able to (i) identify five distinct phenotype 
clusters among PLN p.Arg14del variant carriers, (ii) confirm 
previously described disease features which are character-
istic for this genetic variant, and (iii) discover novel disease 
features that were, up to now, concealed in the deformation 

curves of these variant carriers. These novel features can be 
used to reclassify deformation curves that were previously 
considered normal. Importantly, the phenotype clusters 
identified by this approach seem to have distinct prognostic 
differences, which could potentially lead to improvement 
of individual risk stratification. Applying this approach to 
other patient populations will likely enrich our knowledge 
on deformation patterns in a broad variety of other diseases.

Automated detection of disease features

Myocardial deformation curves contain a large amount 
of information on intrinsic mechanical myocardial prop-
erties. However, the interpretation of deformation curves 
is challenging, which hampers the routine clinical use of 
these curves. Previously, attempts have been made to clas-
sify deformation curves by extracting certain parameters 
manually and applying disease-specific cut-off values [2]. 
However, this approach is complicated by the fact that strain 
values may fall within normal limits during early stages of 
disease, and peak strain values are influenced by variety of 
parameters such as pre- and afterload. Instead, assessment of 
the entire deformation curve to detect disease-specific pat-
terns is probably more appropriate [5]. However, the knowl-
edge of such disease-specific patterns is currently limited. 
Therefore, we investigated the utility of DNN-based classifi-
cation combined with an advanced visualization technique to 
detect and visualize disease features in deformation curves. 
While current DNN visualization techniques usually only 
provide insight on the individual subject level, we used a 
clustering approach to describe different phenotype clusters 
among the investigated disease population.

Disease features in PLN variant carriers

This study was specifically designed to explore the unique 
strain characteristics in patients with a homogeneous genetic 
background. In a recent observational study, we found that 
post-systolic shortening in the LV apex is a typical defor-
mation pattern in PLN p.Arg14del variant carriers who are 
in early stages of disease [3]. In more advanced stages of 
disease, we observed a global reduction of peak strain. These 
deformation patterns were now also detected by our DNN-
based approach, and are shown in cluster C and D, respec-
tively. The DNN-based approach expanded our knowledge 
by showing that the reduction of peak strain in cluster D is 
most pronounced in the apical segments. Post-systolic short-
ening was also present in this cluster, but the DNN did not 
consider it to be of additional value on top of the reduced 
peak strain in the apical segments.

Strikingly, the results of this study also added novel data 
on specific diastolic myocardial behavior that has not been 
recognized before. In clusters A and B, we observed specific 
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patterns of delayed relaxation, where overt post-systolic 
shortening is not (yet) present. It is conceivable that these 
disease features in early diastole can be explained by the 
pathophysiological mechanism of the PLN p.Arg14del vari-
ant, since it is thought that this variant causes PLN to inhibit 
calcium reuptake into the sarcoplasmic reticulum, leading 
to a diastolic calcium overload in the cardiomyocyte [16].

Since disease mechanisms vary among carriers of dif-
ferent variants, we assume that the identified features are 
specific for this PLN variant. In future studies, it would be 
of great interest to include patients with a broad variety of 
variants into a DNN, to characterize variant-specific disease 
features and personalize diagnostic protocols for carriers of 
all different variants. This was beyond the scope of the pre-
sent explorative study.

Since the prognostic value for developing VA was similar 
among clusters A, B and C, one could argue that there is 
no clinical relevance in distinguishing these clusters. How-
ever, it is important to note that by manual classification, 
a significant part of the deformation curves from clusters 
A, B and C would be classified as normal (56%, 56% and 
54%, respectively). With our approach, we could reclassify 
the deformation curves from these individuals from normal 
to abnormal. This highlights the clinical relevance of our 
approach, considering the difference in development of VA 
between the normal cluster O and the abnormal clusters A, 
B and C.

PLN variant carriers without disease features

Clusters A to D all contained PLN variant carriers who were 
correctly classified by the DNN. In addition, we described 
cluster O which contained variant carriers who were not rec-
ognized by the DNN as variant carriers due to the absence of 
disease features. It is known that the PLN p.Arg14del vari-
ant has age-related penetrance with symptoms often begin-
ning around the fifth decade, which implies that there is a 

pre-phenotypical phase in which disease expression is absent 
[8]. Therefore, it is conceivable that the subjects in cluster O 
are the ones who still lack disease expression, and who can 
therefore not be distinguished from population controls by 
the DNN. This is supported by the fact that subjects in this 
cluster were mostly young, pre-symptomatic family mem-
bers who were identified by family screening. The follow-
up data demonstrated that the disease course in this cluster 
was benign; none of the subjects in cluster O developed a 
sustained ventricular arrhythmia during 3 years of follow-up.

Clinical implications and future directions

Since the PLN p.Arg14del variant is characterized by large 
phenotypical variability, this novel DNN-based approach 
may be useful for classifying subjects with this particular 
variant into one of the phenotype clusters. Subjects with this 
variant who do not exhibit disease features (cluster O) can 
perhaps undergo low-frequency follow-up, whereas subjects 
who are classified in the most advanced disease cluster (clus-
ter D) may possibly benefit from more intensive follow-up 
and appropriate therapeutic intervention, for example ICD 
implantation. Future studies should elaborate on the prog-
nostic value of these clusters, also considering other clinical 
variables [17].

Besides using this approach for classification purposes, 
this approach is very useful to gain insight into character-
istic disease features that are concealed in the deformation 
curves. Ideally, this approach should be applied to other dis-
eases, which will expand our knowledge on disease-specific 
deformation patterns and potentially improve the interpreta-
tion of deformation curves in clinical practice. In this proof-
of-concept study we only used the deformation curves from 
the apical 4-chamber view, but in future studies it would be 
of interest to include the deformation curves from all apical 
views, including the atrial and right ventricular deformation 
curves. Combining the deformation curves with ECG data 
in a DNN model would also be of interest in future studies.

Limitations

This study has several limitations to address. First, our 
control group was derived from a population-based cohort, 
while the group of variant carriers were scanned and ana-
lyzed in other centers. This may have induced center-specific 
differences between the controls and the variant carriers. 
Second, the developed DNN was not validated in an external 
cohort. However, the aim of this study was not to investigate 

Fig. 2   Phenotype clusters among PLN p.Arg14del variant carri-
ers. The upper three rows represent the septal myocardial segments 
and the lower three rows represent the lateral myocardial segments. 
The solid deformation curves represent the mean deformation curve 
within a cluster per myocardial segment, with the standard deviation 
in grey. The dotted deformation curve represents the average defor-
mation curve per segment in the control group. The vertical dotted 
green line represents aortic valve closure. Cluster O consists of PLN 
variant carriers who were classified by the DNN as control subjects. 
Clusters A–D were clustered based on the relevance maps. A higher 
relevance score indicates that a specific part of the deformation curve 
is more important for the DNN to classify someone as a PLN subject

◂
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the performance of the algorithm, but to propose a novel way 
to detect diseases-specific features in deformation curves. 
Third, the visualization technique that was used in this study 
only shows the temporal location of important features in 
the deformation curve, but it does not specify what the fea-
ture exactly is. The actual description of the features was 
performed by visual assessment and should be validated in 
future studies. Fourth, since detection of regional abnor-
malities by deformation imaging is limited by inter-vendor 
variability, it remains unknown whether the results can be 
generalized to other vendors [18]. Fifth, the strain measure-
ments in our study were performed by different operators. 
However, inter- and intra-observer agreement of several 
strain measurements were reported to be good in previous 
studies by our group [19]. Last, we reported follow-up data 
to explore prognostic differences among the clusters, but 
the number of events in this cohort was too low to perform 

appropriate statistical survival analyses. This remains to be 
investigated in future studies with longer follow-up intervals.

Conclusion

Applying an explainable DNN-based pipeline to myocar-
dial deformation curves allows for automated discovery of 
(novel) disease features. In subjects with the genetic PLN 
p.Arg14del variant, this approach detected two previously 
described features (i.e. apical post-systolic shortening and 
decreased systolic peak strain), and more importantly, 
revealed two novel features reflecting delayed relaxation. 
The different phenotype clusters seem to have distinct 
prognostic differences, which could lead to improvement 
of individual risk stratification in this group of variant 
carriers. Applying this novel pipeline to other patient 
populations will enrich our knowledge on deformation 

Fig. 3   Representative examples 
of deformation curves from 
clusters A–D. The vertical 
green lines represent aortic 
valve closure. The differences 
between the clusters are most 
pronounced in the septal/lateral 
apical (green/purple) curves. 
A Cluster A: diastolic notch 
type. B Cluster B: second peak 
type. C Cluster C: post-systolic 
shortening type. D Cluster D: 
reduced systolic strain type



The International Journal of Cardiovascular Imaging	

1 3

Table 2   Characteristics of the phenotype clusters

Data are presented as n (%), mean ± SD or median [IQR] as appropriate. P values are derived by one-way Analysis of Variance. 
ACM, arrhythmogenic cardiomyopathy; bpm, beats per minute, DCM, dilated cardiomyopathy; FAC, fractional area change; ICD, implantable 
cardioverter defibrillator; LAVI, left atrial volume index; LVED/LVES, left ventricular end diastolic/systolic; LVEF, left ventricular ejection frac-
tion; LVMD, left ventricular mechanical dispersion; PVC, premature ventricular complex; RVED/RVES, right ventricular end diastolic/systolic; 
VA, ventricular arrhythmia

Overall O A B C D P value

n 278 27 84 45 67 55
Patient characteristics
 Age (years) 41.4 [28.6–54.8] 36.5 [27.4–46.7] 40.0 [23.8–52.5] 45.7 [33.5–63.6] 36.1 [24.0–44.4] 53.6 [42.9–61.1]  < 0.001
 Male sex 126 (45.3) 15 (55.6) 31 (36.9) 19 (42.2) 33 (49.3) 28 (50.9) 1.0
 Proband 49 (17.6) 0 (0) 12 (14.3) 2 (4.4) 9 (13.4) 26 (47.3)  < 0.001
 Presymptomatic 139 (50.0) 22 (81.5) 47 (56.0) 28 (62.2) 41 (61.2) 1 (1.8)  < 0.001
 History of heart 

failure
30 (10.8) 0 (0) 3 (3.6) 2 (4.4) 3 (4.5) 22 (40.0)  < 0.001

 History of VA 95 (34.2) 4 (14.8) 22 (26.2) 9 (20.0) 15 (22.4) 45 (81.8)  < 0.001
 History of sus-

tained VA
42 (15.2) 0 (0) 7 (8.3) 1 (2.2) 4 (6.0) 30 (54.5)  < 0.001

 ICD implanted 58 (21.0) 1 (3.7) 11 (13.3) 2 (4.4) 8 (11.9) 36 (66.7)  < 0.001
 ACM diagnosis 50 (18.5) 0 (0) 11 (13.8) 8 (17.8) 6 (9.1) 25 (48.1)  < 0.001
 DCM diagnosis 42 (15.3) 0 (0) 5 (6.1) 2 (4.4) 4 (6.1) 31 (57.4)  < 0.001

Echocardiogram characteristics
 Heart rate (bpm) 66.2 ± 11.1 69.9 ± 12.2 68.6 ± 10.2 72.1 ± 10.1 59.9 ± 9.6 63.7 ± 10.0  < 0.001
 LVED volume 

(ml/m2)
56.5 [48.8–64.4] 53.7 [49.2–56.9] 53.8 [46.9–61.7] 49.4 [44.3–55.1] 58.3 [52.9–65.8] 75.3 [60.0–91.4]  < 0.001

 LVES volume 
(ml/m2)

24.3 [19.5–31.6] 23.3 [19.0–24.9] 22.5 [18.3–28.4] 20.9 [18.6–23.3] 24.7 [20.8–27.9] 45.9 [34.6–63.5]  < 0.001

 LVEF (%) 56.0 [50.0–60.0] 59.0 [56.0–61.0] 57.0 [52.0–60.2] 58.0 [53.0–61.0] 57.0 [55.0–60.5] 39.0 [29.0–46.0]  < 0.001
 GLS (%) 19.0 [16.5–20.5] 19.4 [18.6–20.9] 19.5 [17.9–20.4] 19.6 [18.5–20.6] 19.9 [18.4–21.4] 12.1 [8.1–14.9]  < 0.001
 RVED area 

(cm2/m2)
10.0 [8.8–11.8] 10.0 [9.5–10.9] 9.7 [8.2–10.8] 9.4 [8.2–11.1] 9.6 [9.0–11.7] 12.9 [10.2–15.6]  < 0.001

 RVES area 
(cm2/m2)

5.7 [4.6–7.2] 5.5 [5.0–5.7] 5.4 [4.2–6.8] 5.2 [4.2–6.1] 5.2 [4.5–6.8] 9.2 [6.4–10.8]  < 0.001

 FAC (%) 41.6 ± 9.1 46.9 ± 4.1 43.3 ± 7.7 45.1 ± 7.8 44.2 ± 7.2 32.0 ± 8.7  < 0.001
 LVMD (ms) 40.0 [30.0–55.0] 31.0 [27.5–38.0] 37.0 [29.0–43.0] 38.0 [29.5–55.5] 35.0 [27.0–48.0] 62.5 [54.2–70.8]  < 0.001
 E-wave velocity 

(cm/s)
72.2 (19.3) 71.4 (18.7) 76.2 (21.1) 64.0 (14.3) 78.4 (16.7) 63.1 (18.9) 0.001

 A-wave velocity 
(cm/s)

52.0 (16.0) 55.2 (14.3) 53.4 (15.4) 58.9 (15.7) 46.1 (12.3) 49.7 (20.3) 0.024

 Average e’ 
(cm/s)

11.4 (4.0) 11.8 (4.1) 12.2 (3.9) 10.6 (3.0) 13.4 (3.6) 6.9 (2.0)  < 0.001

 E/e’ 6.9 (2.7) 6.3 (1.3) 6.6 (2.3) 6.4 (1.7) 6.4 (2.9) 9.2 (3.5)  < 0.001
 LAVI (ml/m2) 30.9 (9.5) 27.6 (7.1) 29.2 (6.9) 29.0 (7.1) 29.1 (8.5) 39.1 (12.4)  < 0.001

Other clinical investigations
 Inferolateral 

T-wave inver-
sion

67 (24.1) 2 (7.4) 18 (21.4) 11 (24.4) 14 (20.9) 22 (40.0) 0.391

 Low QRS volt-
age

85 (31.6) 3 (11.1) 15 (18.3) 8 (18.2) 24 (38.1) 35 (66.0)  < 0.001

 PVC amount 
(per 24 h)

178.0 [4.0–
1574.0]

11.5 [2.5–151.5] 95.0 [3.8–1041.2] 145.0 [3.0–
1172.0]

41.5 [2.0–639.2] 2185.0 [1099.8–
5065.0]

 < 0.001
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characteristics in a broad variety of diseases, which could 
improve the assessment of deformation curves in clinical 
practice.
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