3,454 research outputs found

    Identification of side population cells in mouse primordial germ cells and prenatal testis

    Get PDF
    In mammals, the stem cells of spermatogenesis are derived from an embryonic cell population called primordial germ cells (PGCs). Spermatogonial stem cells displaying the "side population" (SP) phenotype have been identified in the immature and adult mouse testis, but noting is known about the expression of the SP phenotype during prenatal development of germ cells. The SP phenotype, defined as the ability of cells to efflux fluorescent dyes such as Hoechst, is common to several stem/progenitor cell types. In the present study, we analyzed and characterized the Hoechst SP via cytofluorimetric analysis of disaggregated gonads at different time points during embryonic development in mice. To directly test the hypothesis that the SP phenotype is a feature of germ cell lineage, experiments were performed on transgenic animals expressing enhanced green fluorescent protein (EGFP) under the control of the Oct4 promoter, to identify early germ cells up to PGCs. We found that prenatal gonads contain a fraction of SP cells at each stage analyzed, and the percentage of cells in the SP fraction decreases as development proceeds. Surprisingly, more than 50% of the PGCs displayed the SP phenotype at 11.5 dpc (days post coitum). The percentage of germ cells with the SP phenotype decreased steadily with development, to less than 1% at 18.5 dpc. Cytofluorimetric analysis along with immunocytochemistry performed on sorted cells indicated that the SP fraction of prenatal gonads, as in the adult testis, was heterogeneous, being composed of both somatic and germ cells. Both cell types expressed the ABC transporters Abcg2, Abcb1a, Abcb1b and Abcc1. These findings provide evidence that the SP phenotype is a common feature of PGCs and identifies a subpopulation of fetal testis cells including prospermatogonia whose differentiation fate remains to be investigated. © 2011 UBC Press

    Deflecting small asteroids using laser ablation : Deep space navigation and asteroid orbit control for LightTouch2 Mission

    Get PDF
    This paper presents a low-cost, low mass, mission design to successfully intercept and deflect a small and faint, 4 m in diameter asteroid. Intended to be launched after 2025, the laser-ablating mission, LightTouch2 will be used to deflect the orbit of the asteroid by at least 1 m/s. This will be achieved with a total mission lifetime of less than three years. Analysis includes the initial approach of the spacecraft, the operations of the laser at an optimal spacecraft-to-asteroid distance of 50 m and the relative orbit of the spacecraft that flies in formation with the asteroid. Analysis includes line-of-sight measurements with radiometric tracking from ground station to improve the trajectory estimate and observability of the spacecraft, collision avoidance and mapping strategies. The spacecraft will also need optimal discrete control. This is achieved by impulse-bit manoeuvres used to account for the perturbations caused by the resultant thrust on the asteroid, plume impingement, laser recoil and solar radiation pressure. The spacecraft controls its trajectory within a 1 m box from the reference trajectory to enable the laser to optimally focussing the laser beam. The proposed approach uses an unscented Kalman filter to estimate the relative spacecraft-asteroid position, velocity and perturbative acceleration

    DNA Damage Induces p53-dependent Down-regulation of hCHK1

    Get PDF
    Abstract The levels of the human checkpoint gene hCHK1 were measured in human cancer cells growing in vitro after treatment with the DNA damaging agent cis-dichlorodiammine platinum(II) (DDP). Treatment of human cancer cell lines with DDP induced a decrease in the hCHK1 protein levels starting 6 h after treatment, with a further decline at 24 and 48 h. A similar decrease in the levels of hCHK1 was found at the mRNA level by using Northern blot analysis. By using isogenic cell systems in which p53 was disrupted either by transfection with HPV-E6 or by targeted homologous recombination, we found that the DNA damage-induced down-regulation of hCHK1 was only observable in wild type p53-expressing cells, with only a minor decline in the hCHK1 levels observable 48 h after treatment in cells with disrupted p53. Similarly, treatment of mutant p53-expressing human cancer cell lines with DDP did not result in changes in the levels of hCHK1. The p53-dependent down-regulation of hCHK1 is likely to be at transcriptional levels, as suggested by the lack of down-regulation of the hCHK1 when transfected under the control of a heterologous viral promoter. In addition, p53 is able to down-regulate the luciferase activity under the control of the 5′ flanking region of the hCHK1 gene. The data suggest a strict link between p53 and hCHK1 governing the activation and repression of the G2 checkpoint in which both proteins participate

    Individual skyrmion manipulation by local magnetic field gradients

    Get PDF
    Magnetic skyrmions are topologically protected spin textures, stabilised in systems with strong Dzyaloshinskii-Moriya interaction (DMI). Several studies have shown that electrical currents can move skyrmions efficiently through spin-orbit torques. While promising for technological applications, current-driven skyrmion motion is intrinsically collective and accompanied by undesired heating effects. Here we demonstrate a new approach to control individual skyrmion positions precisely, which relies on the magnetic interaction between sample and a magnetic force microscopy (MFM) probe. We investigate perpendicularly magnetised X/CoFeB/MgO multilayers, where for X = W or Pt the DMI is sufficiently strong to allow for skyrmion nucleation in an applied field. We show that these skyrmions can be manipulated individually through the local field gradient generated by the scanning MFM probe with an unprecedented level of accuracy. Furthermore, we show that the probe stray field can assist skyrmion nucleation. Our proof-of-concepts results pave the way towards achieving current-free skyrmion control

    CD3+CD4+LAP+Foxp3-regulatory cells of the colonic lamina propria limit disease extension in ulcerative colitis

    Get PDF
    Background and Aims: In ulcerative colitis (UC), inflammation begins in the rectum and can extend proximally throughout the entire colon. The extension of inflammation is an important determinant of disease course, and may be limited by the action of regulatory T cells (Tregs). In this cross-sectional study, we evaluated the relationship between UC extension and the proportions of CD3+CD4+Foxp3+ and CD3+CD4+LAP+Foxp3- Tregs in the colonic lamina propria (LP) of 79 UC patients and 29 controls. The role of these cells in UC extension was also investigated in the murine oxazolone-induced colitis model. Methods: Patients: Disease extension was classified according to the Montreal classification. Where possible, endoscopic biopsies of involved and uninvolved tissue were obtained from UC patients. Mouse model: Colitis was induced by intrarectal oxazolone administration. Lamina propria mononuclear cells were isolated from patient biopsies and mouse colon tissue using enzymatic method and the percentage of CD3+CD4+Foxp3+ and CD3+CD4+LAP+Foxp3-cells evaluated by immunofluorescence. Confocal microscopy was applied for the visualization and quantification of CD4+LAP+ cells on tissue histological sections. Results: In UC patients with distal colitis the proportion of LP CD3+CD4+Foxp3+ Tregs was significantly higher in inflamed tissue than uninvolved tissue. As opposite, the proportion of LP CD3+CD4+LAP+ Tregs was significantly higher in uninvolved tissue than involved tissue. Both LP CD3+CD4+Foxp3+ and LP CD3+CD4+LAP+ Tregs proportion in involved tissue was significantly higher than in controls irrespective of the extension of inflammation. In mice with oxazolone-induced distal colitis, treatment with LAP-depleting antibody was associated with the development of extensive colitis. Conclusions: Our findings suggest that CD3+CD4+LAP+Foxp3-Tregs limit the extension of inflammatory lesions in UC patients

    Phosphorylation by CK2 regulates MUS81/EME1 in mitosis and after replication stress

    Get PDF
    The MUS81 complex is crucial for preserving genome stability through the resolution of branched DNA intermediates in mitosis. However, untimely activation of the MUS81 complex in S-phase is dangerous. Little is known about the regulation of the human MUS81 complex and how deregulated activation affects chromosome integrity. Here, we show that the CK2 kinase phosphorylates MUS81 at Serine 87 in late-G2/mitosis, and upon mild replication stress. Phosphorylated MUS81 interacts with SLX4, and this association promotes the function of the MUS81 complex. In line with a role in mitosis, phosphorylation at Serine 87 is suppressed in S-phase and is mainly detected in the MUS81 molecules associated with EME1. Loss of CK2-dependent MUS81 phosphorylation contributes modestly to chromosome integrity, however, expression of the phosphomimic form induces DSBs accumulation in S-phase, because of unscheduled targeting of HJ-like DNA intermediates, and generates a wide chromosome instability phenotype. Collectively, our findings describe a novel regulatory mechanism controlling the MUS81 complex function in human cells. Furthermore, they indicate that, genome stability depends mainly on the ability of cells to counteract targeting of branched intermediates by the MUS81/EME1 complex in S-phase, rather than on a correct MUS81 function in mitosis

    Mitochondria hyperpolarization is an early event in oxidized low-density lipoprotein-induced apoptosis in Caco-2 intestinal cells

    Get PDF
    AbstractWe investigated the mechanisms underlying the pro-apoptotic activity exerted by oxidized low-density lipoproteins (oxLDL) in Caco-2 intestinal cells, a cell line which retains many morphological and enzymatic features typical of normal human enterocytes. We found that: (i) oxLDL induced mitochondrial-mediated apoptosis by provoking first an increase in mitochondrial membrane potential, followed, later, by the typical apoptosis-associated depolarization (type II apoptosis); accordingly, (ii) caspase-9 inhibition significantly hindered apoptosis while caspase-8 inhibition did not; and finally (iii) dietary phenolic antioxidizing compounds exerted a significant protective antiapoptotic activity. These results point to mitochondrial hyperpolarization as ‘sensitizing feature’ in apoptotic proneness of Caco-2 intestinal cells to oxLDL exposure

    The Gene Targeting Approach of Small Fragment Homologous Replacement (SFHR) Alters the Expression Patterns of DNA Repair and Cell Cycle Control Genes

    Get PDF
    Cellular responses and molecular mechanisms activated by exogenous DNA that invades cells are only partially understood. This limits the practical use of gene targeting strategies. Small fragment homologous replacement (SFHR) uses a small exogenous wild-type DNA fragment to restore the endogenous wild-type sequence; unfortunately, this mechanism has a low frequency of correction. In this study, we used a mouse embryonic fibroblast cell line with a stably integrated mutated gene for enhanced green fluorescence protein. The restoration of a wild-type sequence can be detected by flow cytometry analysis. We quantitatively analyzed the expression of 84 DNA repair genes and 84 cell cycle control genes. Peculiar temporal gene expression patterns were observed for both pathways. Different DNA repair pathways, not only homologous recombination, as well as the three main cell cycle checkpoints appeared to mediate the cellular response. Eighteen genes were selected as highly significant target/effectors of SFHR. We identified a wide interconnection between SFHR, DNA repair, and cell cycle control. Our results increase the knowledge of the molecular mechanisms involved in cell invasion by exogenous DNA and SFHR. Specific molecular targets of both the cell cycle and DNA repair machineries were selected for manipulation to enhance the practical application of SFHR
    • …
    corecore