87 research outputs found

    Superfluid Vortex Dynamics on Planar Sectors and Cones

    Get PDF
    We study the dynamics of vortices formed in a superfluid film adsorbed on the curved two-dimensional surface of a cone. To this aim, we observe that a cone can be unrolled to a sector on a plane with periodic boundary conditions on the straight sides. The sector can then be mapped conformally to the whole plane, leading to the relevant stream function. In this way, we show that a superfluid vortex on the cone precesses uniformly at fixed distance from the apex. The stream function also yields directly the interaction energy of two vortices on the cone. We then study the vortex dynamics on unbounded and bounded cones. In suitable limits, we recover the known results for dynamics on cylinders and planar annuli.Comment: 10 pages, 8 figure

    Efimov trimers under strong confinement

    Full text link
    The dimensionality of a system can fundamentally impact the behaviour of interacting quantum particles. Classic examples range from the fractional quantum Hall effect to high temperature superconductivity. As a general rule, one expects confinement to favour the binding of particles. However, attractively interacting bosons apparently defy this expectation: while three identical bosons in three dimensions can support an infinite tower of Efimov trimers, only two universal trimers exist in the two dimensional case. We reveal how these two limits are connected by investigating the problem of three identical bosons confined by a harmonic potential along one direction. We show that the confinement breaks the discrete Efimov scaling symmetry and destroys the weakest bound trimers. However, the deepest bound Efimov trimer persists under strong confinement and hybridizes with the quasi-two-dimensional trimers, yielding a superposition of trimer configurations that effectively involves tunnelling through a short-range repulsive barrier. Our results suggest a way to use strong confinement to engineer more stable Efimov-like trimers, which have so far proved elusive.Comment: 8 pages, 4 figures. Typos corrected, published versio

    Polarons, Dressed Molecules, and Itinerant Ferromagnetism in ultracold Fermi gases

    Get PDF
    In this review, we discuss the properties of a few impurity atoms immersed in a gas of ultracold fermions, the so-called Fermi polaron problem. On one side, this many-body system is appealing because it can be described almost exactly with simple diagrammatic and/or variational theoretical approaches. On the other, it provides quantitatively reliable insight into the phase diagram of strongly interacting population imbalanced quantum mixtures. In particular, we show that the polaron problem can be applied to study itinerant ferromagnetism, a long standing problem in quantum mechanics.Comment: Review paper; published version, 48 pages and 23 figure

    Quantized superfluid vortex dynamics on cylindrical surfaces and planar annuli

    Get PDF
    Superfluid vortex dynamics on an infinite cylinder differs significantly from that on a plane. The requirement that a condensate wave function be single valued upon once encircling the cylinder means that such a single vortex cannot remain stationary. Instead, it acquires one of a series of quantized translational velocities around the circumference, the simplest being ±ℏ/(2MR)\pm \hbar/(2MR), with MM the mass of the superfluid particles and RR the radius of the cylinder. A generalization to a finite cylinder automatically includes these quantum-mechanical effects through the pairing of the single vortex and its image in either the top or bottom end of the surface. The dynamics of a single vortex on this surface provides a hydrodynamic analog of Laughlin pumping. The interaction energy for two vortices on an infinite cylinder is proportional to the classical stream function χ(r12)\chi({\bf r}_{12}), and it crosses over from logarithmic to linear when the intervortex separation r12{\bf r}_{12} becomes larger than the cylinder radius. An Appendix summarizes the connection to an earlier study of Ho and Huang for one or more vortices on an infinite cylinder. A second Appendix reviews the topologically equivalent planar annulus, where such quantized vortex motion has no offset, but Laughlin pumping may be more accessible to experimental observation.Comment: 16 pages, 7 figures; published version, with thoroughly revised Appendice

    Strong-coupling ansatz for the one-dimensional Fermi gas in a harmonic potential

    Get PDF
    A major challenge in modern physics is to accurately describe strongly interacting quantum many-body systems. One-dimensional systems provide fundamental insights since they are often amenable to exact methods. However, no exact solution is known for the experimentally relevant case of external confinement. Here, we propose a powerful ansatz for the one-dimensional Fermi gas in a harmonic potential near the limit of infinite short-range repulsion. For the case of a single impurity in a Fermi sea, we show that our ansatz is indistinguishable from numerically exact results in both the few- and many-body limits. We furthermore derive an effective Heisenberg spin-chain model corresponding to our ansatz, valid for any spin-mixture, within which we obtain the impurity eigenstates analytically. In particular, the classical Pascal's triangle emerges in the expression for the ground-state wavefunction. As well as providing an important benchmark for strongly correlated physics, our results are relevant for emerging quantum technologies, where a precise knowledge of one-dimensional quantum states is paramount.Comment: 13 pages, 6 figures. Published versio

    Bose polarons at finite temperature and strong coupling

    Get PDF
    A mobile impurity coupled to a weakly interacting Bose gas, a Bose polaron, displays several interesting effects. While a single attractive quasiparticle is known to exist at zero temperature, we show here that the spectrum splits into two quasiparticles at finite temperatures for sufficiently strong impurity-boson interaction. The ground state quasiparticle has minimum energy at Tc, the critical temperature for Bose-Einstein condensation, and it becomes overdamped when T»Tc. The quasiparticle with higher energy instead exists only below Tc, since it is a strong mixture of the impurity with thermally excited collective Bogoliubov modes. This phenomenology is not restricted to ultracold gases, but should occur whenever a mobile impurity is coupled to a medium featuring a gapless bosonic mode with a large population for finite temperature.Peer ReviewedPostprint (author's final draft
    • …
    corecore