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We study the dynamics of vortices formed in a superfluid film adsorbed on the curved two-
dimensional surface of a cone. To this aim, we observe that a cone can be unrolled to a sector on
a plane with periodic boundary conditions on the straight sides. The sector can then be mapped
conformally to the whole plane, leading to the relevant stream function. In this way, we show that
a superfluid vortex on the cone precesses uniformly at fixed distance from the apex. The stream
function also yields directly the interaction energy of two vortices on the cone. We then study the
vortex dynamics on unbounded and bounded cones. In suitable limits, we recover the known results
for dynamics on cylinders and planar annuli.

I. INTRODUCTION

Vortex dynamics in superfluid films depends strongly
on the shape of the underlying surface. For example,
a region with local positive Gaussian curvature (such as
the top of a smooth hill, or the bottom of a valley) exerts
a repulsive force on a vortex [1, 2]. Geometries with
vanishing Gaussian curvature also have special features:
for example, single vortices on an infinite cylinder have
quantized azimuthal velocities [3] because of the single-
valued nature of the condensate wave function. Here,
we study the different and interesting case of superfluid
vortex dynamics on a conical surface, which is equivalent
to the motion on a planar sector [4].

We consider a sector (a wedge) of the plane with open-
ing angle 2π/α, where α is real and larger than one. We
also impose periodic boundary conditions on the two ra-
dial sides. To determine the hydrodynamic flow arising
from a singly quantized vortex at some complex position
z0 in the sector, we use the conformal transformation
Z(z) = zα from the sector to the whole plane. Ref-
erence [4] considered the special case α = 3, but this
transformation holds for general α ≥ 1 [5]. Note that the
limiting case α→ 1 represents the whole plane.

Section II provides basic background for this problem,
including the complex potential and the self-induced mo-
tion associated with the curved surface of the cone. The
next Secs. III and IV consider the energy and dynam-
ics of a system of vortices, where the interaction energy
can be expressed simply in terms of the stream function.
Section V generalizes to the case of bounded cones, both
internally and externally. The last Sec. VI concludes with
discussion and a brief conjecture about the situation for
0 < α < 1.
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II. VORTICES ON SECTORS AND CONES

We start from the full plane with complex coordinate
Z = X + iY . A fundamental tool for the description of
hydrodynamics of two-dimensional incompressible and ir-
rotational fluids is the complex potential F (Z) = χ+ iΦ,
where χ is the stream function and Φ is the velocity po-
tential. Either function provides the hydrodynamic flow
pattern with the general relation vy+ivx = (~/M)F ′(Z),
with M the mass of the superfluid particles. For a singly
quantized positive vortex at Z0 = X0 + iY0, the complex
potential is

Fplane(Z) = ln(Z − Z0), (1)

and we use a conformal map to obtain the corresponding
complex potential on the sector and the cone.

A. Geometry of cones and sectors

It is clear from elementary considerations that a fi-
nite cone (like a “dunce cap” or a “witch hat”) may be
unrolled onto a wedge-shaped sector. Similarly, an infi-
nite cone may be unfolded onto an infinite sector of the
plane, or a truncated cone unfolds to a portion of an an-
nulus. This procedure does not introduce any distortion,
and therefore preserves both lengths and areas. It is also
conformal, since it preserves angles locally.

Let us here briefly review the geometric descriptions of
a cone, and of the corresponding sector. The usual spher-
ical polar coordinates (r, θ, φ) can make this connection
precise, since an unbounded cone is the axisymmetric
surface associated with fixed polar angle θ, leaving r and
φ as the two parameters specifying locations on the sur-
face. In general, the three-dimensional coordinate vector
becomes

r = r sin θ cosφ x̂+ r sin θ sinφ ŷ + r cos θ ẑ (2)

expressed in spherical polar coordinates. The partial
derivatives ∂r/∂r, ∂r/∂θ, and ∂r/∂φ yield (after nor-
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FIG. 1. A planar sector with opening angle 2π/α (left panel)
may be wrapped up to form a cone with aperture angle θ =
arcsin(1/α) (right panel). Here, we choose α = 2.

malization) the three orthogonal unit vectors r̂, θ̂, and

φ̂ (see, for example Sec. 10.9.2 in Ref. [5]). On the sur-

face of the cone, the outward unit normal is n̂ = ±θ̂ with
±1 = sgn(cos θ) = cos θ/| cos θ|.

The apex angle of the cone is θ for θ < π/2 and π − θ
for θ > π/2, and the perpendicular distance from the
symmetry axis to the conical surface is r⊥ = r sin θ. Let
sin θ = 1/α or, equivalently θ = arcsin(1/α), both with
α ≥ 1. Hence the perpendicular distance becomes r⊥ =
r/α, and cos θ =

√
α2 − 1/α. An illustrative sketch of

the geometry under consideration is given in Fig. 1.
On the surface of the cone, the element of distance is

ds = r̂ dr+φ̂ r⊥dφ. Introducing the parameter φ̄ ≡ φ/α,
which has the range 0 ≤ φ̄ ≤ 2π/α, the element of dis-

tance becomes ds = r̂ dr + φ̂ r dφ̄, which can now be
treated as the element of distance on an unbounded pla-
nar sector (or wedge) of angular opening 2π/α. In this
way, we have a direct mapping from the surface of the
cone with spherical polar coordinates r, θ, φ and fixed θ
to the planar sector with plane polar coordinates r, φ̄ and
wedge angle 2π/α. Evidently, the same planar sector can
yield a cone with apex that points up or down, depend-
ing on whether the surface of the sector appears on the
outside or inside of the cone.

Note the two important limiting cases:

1. If α � 1, then sin θ → 0 and θ → 0 or π. Here
the cone becomes narrow and approaches a cylinder
with open end pointing down or up, respectively
(see below for more detailed discussion).

2. If α→ 1+, then sin θ → 1− and θ → π/2. Here the
cone becomes flat and the sector approaches the
full plane.

For any α > 1, the cone has a sharp apex where the
curvature is singular; this singularity disappears only for
the special value θ = π/2 or equivalently α = 1. On
the smooth conical surface, the curvature κ1 vanishes
along the radial direction and the curvature along the
azimuthal direction is κ2 = ∓ cot θ/r = ∓

√
α2 − 1/r.

Hence the Gaussian curvature K = κ1κ2 vanishes but
the mean curvature H = 1

2 (κ1 + κ2) = − 1
2∇ · n̂ is gen-

erally nonzero. These results follow from the material in
Secs. IV and V of Ref. [6].

B. Conformal map, complex potential and vortex
dynamics

In this way, the behavior of a quantized vortex on the
surface of a cone becomes equivalent to that of a two-
dimensional vortex on a planar sector with opening an-
gle 2π/α and periodic boundary conditions on the two
straight sides. Similar to the case of a cylinder and its
equivalent infinite planar strip with periodic boundary
conditions (see Refs. [3, 7], and Appendix A), the con-
formal transformation

z = Z1/α ←→ Z = zα (3)

maps the whole plane with Z = |Z|eiφ to the unbounded

sector with z = |z|eiφ̄. Hence we have Z = |Z|eiφ =

|z|αeiαφ̄, where −π ≤ φ ≤ π and −π/α ≤ φ̄ ≤ π/α (for
an application to electrostatics, see Sec. 25.2 in Ref. [5]).
The action of this map is illustrated in Fig. 2. Notice
that for complex numbers the power function is defined
through the logarithm function, zα ≡ eα ln z, so that a
choice of branch cut of the logarithm different from the
principal one will result in a different angular range for
the variable φ̄.

On the infinite plane, the complex potential for a posi-
tive singly quantized vortex at position Z0 is simply given
by Eq. (1). The conformal transformation immediately
gives the equivalent result for a positive vortex on an
unbounded sector with apex angle θ = arcsin(1/α):

Fcone(z) = ln (zα − zα0 ) . (4)

Note that for α = n (an integer), this result is simply
the sum of contributions for the original vortex and its
n− 1 images equally spaced on a circle of radius |z0|. In
terms of the variables (r, φ) on the cone, the correspond-
ing stream function reads

χcone(r, r0) = 1
2 ln

[
r2α − 2rαrα0 cos(φ− φ0) + r2α

0

]
.
(5)

For a general F (z) that includes multiple vortices and
perhaps boundaries, it is not hard to show that the mo-
tion of a positive vortex at z0 = r0e

iφ0 is

ẏ0 + iẋ0 =
~
M

[
dF

dz
− 1

z − z0

]
z→z0

, (6)

where the last term subtracts the (singular) circulating
flow from the vortex itself. Given the complex potential
in Eq. (4) for an unbounded sector (and hence for the
surface of an infinite cone), an elementary calculation
gives the result

ẏ0 + iẋ0 =
(α− 1)~

2Mz0
(7)

or, equivalently, in vector form,

ṙ0 =
(α− 1)~

2Mr0
n̂× r̂0, (8)
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FIG. 2. Conformal map to a sector and cone. The map z = Z1/α with α ≥ 1 sends the complex plane Z (left)
onto a sector with opening angle 2π/α (center). This sector may be folded onto a three-dimensional cone with opening angle
θ = arcsin(1/α) (right). The images show the specific case α = 3. The Hue coloring of the maps corresponds to the azimuthal
angle of the coordinate on the source plane, φ = Arg(Z).

where x0 = r0 cos φ̄0 and y0 = r0 sin φ̄0. If α → 1, the
vortex becomes stationary, as expected because the sec-
tor then covers the whole plane and the equivalent cone
becomes flat.

Note that the motion is purely azimuthal, so that the
time taken to complete one cycle on the sector is

t0 =
2πr0

α |ṙ0|
=

4πMr2
0

α(α− 1)~
.

The frequency of the cyclic vortex motion around the
cone is 1/t0, and correspondingly the angular frequency
around the cone is

φ̇0 =
2π

t0
=
α(α− 1)~

2Mr2
0

, (9)

expressed in terms of the radial distance r0 along the sur-
face from the apex of the cone. For many purposes, the
more relevant distance is r⊥ = r0 sin θ = r0/α, yielding

φ̇0 =

(
1− 1

α

)
~

2Mr2
⊥
. (10)

In the limit α � 1, the apex angle θ = arcsin(1/α) ≈
1/α becomes small, and the cone locally approaches a
cylinder. In this limit Eq. (10) correctly reduces to the

quantized result φ̇0 = ~/(2Mr2
⊥) that we found for an

infinite cylinder of radius r⊥ in Ref. [3].
It is also instructive to examine the limiting behav-

ior for α � 1 of the conformal transformation Z = zα

from a planar sector to the whole plane. Specifically,
we now show that this transformation locally becomes
that for the conformal transformation from a strip with
periodic boundary conditions to the whole plane, which
is discussed in detail in Appendix A. Indeed, consider

a point on the sector with |z| ≈ 1. Let z = |z|eiφ̄
with |z| = 1 + ε and −π/α < φ̄ < π/α. Here

zα = eα ln z = eα[ln(1+ε)+iφ̄] ≈ eα(ε+iφ̄). The rescaling
z̄ = αφ̄ − iαε = x̄ + iȳ then gives the desired result
zα ≈ eiz̄. This mapping naturally associates the angle φ̄
on the sector with the angle φ = αφ̄ on the cylinder.

Finally, let us take a close look at the local flow around
a vortex core located at r0. The stream function Eq. (5)
may be expanded by introducing δr = r − r0 and δφ =
φ− φ0, to obtain

χcone(r, r0) ≈ 1
2 ln

[
α2r2α−2

0

(
δr2 + r2

⊥δφ
2
)]
, (11)

which shows explicitly that, very close to the vortex core,
the stream function is constant for circles defined by the
constant squared distance ds2 = δr2 +r2

⊥δφ
2. This result

is expected, since vortex cores on the plane are circu-
lar, and conformal transformations preserve the shapes
of infinitesimal objects. Circular streamlines are indeed
visible in the vicinity of the cores in both Figs. 5 and 6.

III. ENERGY OF TWO VORTICES

In the present hydrodynamic model, the total energy
Etot of two vortices on a cone is purely kinetic:

Etot = 1
2nM

∫
d2r v2, (12)

where n is the two-dimensional number density and v =
n̂ × ∇χtot is the total velocity. Here, χtot = q1χ1 +
q2χ2 with χj = χcone(r, rj), and qj the charge of vortex
j. The total energy may be written as Etot = E1 +
E12 + E2, where E12 is the interaction energy between
the two vortices, and E1 and E2 are the corresponding
self-energies.
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A. Interaction energy

The two cross terms in Etot yield the interaction energy
of two vortices

E12 = q1q2
n~2

M

∫
d2r∇χ1 ·∇χ2. (13)

Use the two-dimensional divergence theorem to rewrite
the integral as

I12 =

∮
C
dlχ1 ν̂ ·∇χ2 −

∫
d2rχ1∇2χ2, (14)

where ν̂ is the outward unit normal in the surface to the
various boundaries. The second term immediately gives
−2πχ12 = −2πχcone(r1, r2) because ∇2χ2 = 2πδ(2)(r −
r2).

The first term of Eq. (14) is a line integral around the
boundary of the cone. It is natural to take two circles:
one at radial distance ε � rj since the apex of the cone
is a singular region, and the other at R� rj because the
overall integral is log divergent.

For small r = ε, the unit normal vector is ν̂ = −r̂. The
relevant derivative becomes ∂χ2/∂r|ε ≈ −αεα−1 cos(φ −
φ2)/rα2 . The circumference is 2πε/α, so that this con-
tribution vanishes for ε → 0 (note that this line integral
also vanishes because of the cos factor).

On the large circle the stream function becomes χ2 ≈
ln rα so that ∂χ2/∂r ≈ α/r. Here the unit vector ν̂ is
simply r̂ and the circumference is 2πR/α, so that this
term contributes 2π lnRα. Consequently, we find

E12 = −q1q2
πn~2

M
ln

(
r2α
1 − 2rα1 r

α
2 cosφ12 + r2α

2

R2α

)
,

(15)
where φ12 = φ1 − φ2. Note that the argument of the
logarithm is dimensionless, as it must be. This function
is periodic in the relative angular displacement φ1 − φ2,
but the dependence on the radial position (0 < rj <∞)
is more complicated, with the power laws involving the
parameter α. This behavior reflects the loss of transla-
tion symmetry along the radial axis of the cone because
the cone’s tip serves as the origin of the spherical polar
coordinates (r, φ) with fixed θ.

B. Self-energy

Despite the loss of translational symmetry, the self-
energy for a single vortex at position (r1, φ1) on a large
cone of radial dimension R� r1 is scarcely more intricate
than for a plane or a cylinder. As for the interaction
energy, we again integrate by parts

E1 =
n~2

2M

∫
d2r∇·(χ1∇χ1)−n~

2

2M

∫
d2r χ1∇2χ1, (16)

where the integral is over the surface of the bounded
cone with r = R � r1 excluding a small circle of ra-
dius ξ around the vortex core (and a small circle around

the apex of the cone, which is irrelevant here). This ex-
clusion near the vortex means that the second term in
Eq. (16) never contributes. In addition, the first term
can be evaluated readily with the two-dimensional diver-
gence theorem

E1 =
n~2

2M

∮
dl χ1 ν̂ ·∇χ1, (17)

where the integral is over all boundaries on the surface
and ν̂ is the outward unit normal in the surface to the
boundaries of the original area (here the large circle at
r = R and the small circle around the vortex core).

Start with the large circle at r = R, where ν̂ is just the
unit vector r̂. For r � r1, the stream function (5) sim-
plifies to χcone ≈ ln rα, and a straightforward calculation
gives the contribution (πn~2/M) lnRα.

Next, consider the small circle around the vortex core,
where Eq. (11) shows that the flow is axisymmetric
around the vortex. Define u2 = δr2 + r2

⊥δφ
2 so that u a

local radial variable centered on the vortex. Hence the
local stream function (11) becomes χcone ≈ ln

(
α rα−1

1 u
)

and the local outward normal is ν̂ = −û. It is not hard
to find the corresponding contribution to the self-energy
−
(
πn~2/M

)
ln
(
α rα−1

1 ξ
)
.

Together, these two contributions yield the relevant
self-energy of a singly quantized vortex at r1, φ1 on a
large truncated cone with bounding radial coordinate r =
R� r1 (correspondingly R⊥ = R sin θ = R/α)

E1 ≈
πn~2

M
ln

(
Rα

αξrα−1
1

)
≈ πn~2

M
α ln

(
R

ξ

)
, (18)

where the second expression keeps only the leading loga-
rithmic term for R/ξ � 1. If α = 1, the first expression
reduces to the familiar self-energy for a vortex on a plane.
Otherwise, E1 explicitly involves the radial position r1 of
the vortex on the cone, but only as an additive logarith-
mic constant.

C. Total energy of vortex dipole on a cone

A combination of the various terms yields the total
energy Etot = E1 + E2 + E12 for the vortex dipole

Etot =
πn~2

M
ln

(
r2α
1 − 2rα1 r

α
2 cosφ12 + r2α

2

α2ξ2rα−1
1 rα−1

2

)
. (19)

As expected, this is independent of R since the total
charge vanishes. Any dynamical motion of a vortex
dipole must maintain constant total energy.

This expression becomes particularly simple for the
symmetric initial condition r1 = r2 = r0 and φ1 = −φ2 =
φ0, which yields

Etot =
πn~2

M
ln

[
2r2

0 (1− cos(2φ0))

α2ξ2

]
=

2πn~2

M
ln

(
2r0 sinφ0

αξ

)
. (20)
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FIG. 3. Trajectories of a vortex dipole on an unbounded
cone with α = 3. This image depicts directly rje

iφj , where rj
and φj (j = 1, 2) are the radial and angular positions of the
two vortices on the cone, as given by Eqs. (23) and (24). In
each of the panels, the blue diamond denotes the tip of the
cone. The positive vortex 1 and the negative vortex 2 start
at t = 0 from the black and red dots, respectively, which are
located at unit radius and angles ±π/4 (left), ±π/2 (center),
and ±3π/4 (right), respectively, and evolve freely on the sur-
face until tmax = Mr20/~. As time passes, the color of the
trajectory gets increasingly dark. In the right figure, the vor-
tices initially move toward the apex, pass over the shoulder
at φ0 = ±π/2, and then move away from the apex.

To be very specific, any allowed motion of this special
vortex dipole must conserve the product r0 sinφ0. If
q1 = 1 and q2 = −1 and 0 < φ0 < π/2, the flow through
the center of the vortex dipole is away from the apex
and the dipole will move in the same direction, with r0

increasing. In this case, sinφ0 must correspondingly de-
crease and this process can continue indefinitely. In con-
trast, if π/2 < φ0 < π, then r0 starts to decrease and
the dipole moves toward the apex. This motion must
eventually reach a turning point because sinφ0 cannot
exceed 1. It then turns around and moves away from the
apex, as seen in the last part of Fig. 3. Note that none of
this analysis gives any information about the local speed
along the trajectory.

To interpret this expression in another way, note that
for this special initial condition, the three-dimensional
vector separation between the two vortices is r1 − r2 =
2r0 sin θ sinφ0 ŷ = (2r0 sinφ0/α) ŷ and lies along ŷ.
Hence the constancy of Etot implies that (r1 − r2) must
remain fixed and parallel to ŷ.

IV. DYNAMICS OF TWO VORTICES ON A
CONE

On an unbounded plane and on an infinite cylinder [3],
a vortex dipole moves uniformly perpendicular to the line
between their centers and in the same direction as the
flow between them. In both cases, the net vortex-charge
neutrality means that the relative vector r12 = r1 − r2

is a constant of the motion. Ultimately, this behavior re-
flects the translational and rotational invariance of these
surfaces.

Unlike the case of motion on a cylinder, a single vor-
tex at r1 on a cone has a self-induced motion ṙ1 that
depends on its specific position. When there is an addi-
tional vortex at r2, the translational velocity of the first
vortex gains an added contribution arising from the hy-
drodynamic flow from vortex 2 evaluated at r1, namely
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FIG. 4. Trajectories of a pair of positive vortices on an
unbounded cone with α = 3. Initial conditions are r1 = 1
and r2 = 1.5 (top row), 2.0 (middle row) and 2.5 (bottom
row), with φ1 = φ2 = 0 initially. Left: the evolution stops at
tmax = Mr20/~. Center: the evolution continues until tmax =
30Mr20/~. Right figures show r21 and r22, along with their sum,
which indeed remains constant during the whole evolution.

v2(r1) = q2(~/M)n̂×∇1χcone(r1, r2).

The details are straightforward. For example, the com-
bined translational velocity of vortex 1 has the explicit
form

ṙ1 =
~q1

2Mr1
(α− 1)φ̂1 (21)

+
~q2 α r

α
1

Mr1

[rα1 − rα2 cosφ12] φ̂1 − rα2 sinφ12 r̂1

ρ2
,

where ρ2 =
(
r2α
1 − 2rα1 r

α
2 cosφ12 + r2α

2

)
, and φ12 = φ1 −

φ2. A similar expression holds for ṙ2. Note that the unit

vectors (r̂j , φ̂j) here vary locally and differ for the two
vortices. The first term on the right side arises from the
self-induced motion and is purely azimuthal, depending
on the local position and the sign of the charge q1. In
contrast, the second term is the motion induced by the
hydrodynamic flow of second vortex. It depends on the
positions of both vortices and on the charge q2.

To integrate these equations, recall that r = rr̂, so
that the time derivative of r yields

ṙ = ṙ r̂ + r sin θ φ̇ φ̂. (22)
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Equation (21) gives the two coupled equations

ṙ1 =
−~q2αr

α
1 r

α
2 sinφ12

Mr1ρ2
(23)

r1 sin θφ̇1 =
~q1(α− 1)

2Mr1
+

~q2αr
α
1

Mr1

rα1 − rα2 cosφ12

ρ2
.(24)

Similar equations hold for the second vortex.
These coupled equations have a remarkably simple first

integral: The antisymmetry of sinφ12 for 1 ↔ 2 shows
that q1r1ṙ1 + q2r2ṙ2 = 0. Hence the quantity q1r

2
1 + q2r

2
2

is conserved. In combination with the conservation of
Etot, the problem effectively reduces to two variables and
becomes relatively straightforward.

For two vortices with opposite signs (a vortex dipole
with q1q2 = −1) the quantity r2

1 − r2
2 remains fixed, al-

lowing each correlated variable to become large. Figure
3 illustrates such behavior for symmetric initial condi-
tions. In contrast, for two vortices with the same sign
(q1q2 = 1), the quantity r2

1 + r2
2 is fixed, so that the

motion of the two vortices remains localized, as seen in
Fig. 4 for several symmetric initial conditions.

A few cases are simple to describe. The first is a vortex
dipole with r1 = r2 = r0 and φ1 = −φ2 = φ0. The four
coupled equations now yield the single pair

ṙ0 =
~q1α cotφ0

2Mr0
and φ̇0 = − ~q1α

2Mr2
0

. (25)

Since ṙ0 + r0 cotφ0 φ̇0 = 0, these equations are equiva-
lent to the condition that r0 sinφ0 is constant. The cor-
responding dynamics is shown in Fig. 3. Note that this
condition ensures the conservation of total energy as seen
in Eq. (20).

The other example is a pair of equal-charge vortices
(q1 = q2 = q0) with initial conditions along the same ra-
dial direction r1 6= r2 and φ2 = φ1 = 0. Figure 4 shows
the resulting dynamics for three cases: r2/r1 = 1.5, 2.0,
and 2.5. In the first, the interaction of the two vortices
dominates the dynamics, whereas for the last, the vor-
tices move essentially independently under the influence
of the cone. In each case, we show explicitly that r2

1 + r2
2

remains fixed.

V. CONES WITH FINITE BOUNDARIES

This section uses the method of images on the bounded
sector to determine the appropriate stream function on
the bounded cone and the dynamical motion of a vortex
with this geometry.

A. Finite cone with outer radius R2

For a finite sector of radius R2 with 0 < r < R2,
the method of images gives the intuitive result (compare

FIG. 5. Streamlines (black) and lines of constant phase
(white) for positive unit vortex at z0 = 0.5R2 on a sector with
α = 3, fixed outer radius R2, and periodic boundary condi-
tions (equivalent to a truncated cone of radius R2). These
lines arise from the real and imaginary parts of the complex
function Fbounded(z) in Eq. (26). The Hue coloring of the plot
denotes the phase of the wave function.

Ref. [3])

Fbounded(z) = ln

(
zα − zα0

zα − (R2
2/z
∗
0)α

)
. (26)

With this complex potential, it is straightforward to visu-
alize the streamlines (black) and lines of constant phase
(white) for a positive vortex, as shown in Fig. 5. It is
also not difficult to project a similar phase pattern onto
the surface of an equivalent three-dimensional truncated
cone, as shown in Fig. 6.

The precessional velocity of a positive vortex at z0 =
r0e

iφ0 on the bounded cone directly follows from Eq. (6):

ṙ0 =
~

Mr0

(
α− 1

2
+

αr2α
0

R2α
2 − r2α

0

)
φ̂0, (27)

where the first term is that for an unbounded cone and
the second reflects the presence of the outer boundary.
For α → 1 (the planar case), this result reproduces the
standard expression from classical hydrodynamics [see,
for example, Eq. (B7) in Ref. [3]]. For r0 � R2, the
second term vanishes, reproducing the result for an un-
bounded cone. In contrast, the second term predomi-
nates for r0 ≈ R−2 , when the precessional velocity in-
creases rapidly.
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FIG. 6. Streamlines (black) and lines of constant phase
(white) for positive unit vortex on a truncated cone with α =
2.1, opening angle θ ≈ 0.5 and r0 = 0.5R2. These lines arise
from the real and imaginary parts of the complex function
Fbounded(z) in Eq. (26).

B. Truncated unbounded cone with inner radius R1

A similar formalism describes the motion of a positive
vortex on an unbounded truncated cone with R1 < r <
∞ where r again is the radial coordinate measured along
the surface of the cone. The complex potential is now

Ftrunc(z) = ln

(
zα − zα0

zα − (R2
1/z
∗
0)α

)
+ ln zα. (28)

Here the last term reflects an additional positive quan-
tized vortex at the origin ensuring that the net circulation
around the inner boundary vanishes.

Equation (6) readily yields the corresponding preces-
sional velocity

ṙ0 =
~

Mr0

(
α− 1

2
− αR2α

1

r2α
0 −R2α

1

)
φ̂0. (29)

For α → 1 (the planar case), this result reproduces the
classical expression. Here, the second term (reflecting
the combined effect of the image and the vortex at the
origin) now induces a negative motion when r0 ≈ R+

1 .

C. Truncated bounded cone with R1 < r < R2

As seen in our earlier works on the annulus (Ref. [8])
and on the cylinder (Ref. [3]), the inclusion of two bound-
aries leads to a doubly infinite set of images. Equation

FIG. 7. Translational velocity in the azimuthal direction
v0 (in units of ~/MR2) from Eq. (31) as function of vortex
position r0, for various values of α on a truncated bounded
cone with R1/R2 = 0.1. The curve for α = 1 is similar to
that in Fig. 7 of our earlier paper, Ref. [3].

(B3) in Ref. [3] gives the complex potential for a vortex
in a planar annulus with R1 < r0 < R2. The correspond-
ing complex potential for a vortex at z0 = r0e

iφ0 in a
bounded planar sector with opening angle 2π/α follows
immediately with the conformal transformation Z = zα:

Fbounded(z) = ln

[
ϑ1[−(i/2) ln(zα/zα0 ), (R1/R2)α]

ϑ1[−(i/2) ln(zα/z′α0 ), (R1/R2)α]

]
.

(30)
Here z′0 = R2

2/z
∗
0 = (R2

2/r0)eiφ0 is the complex image of
z0 with respect to the outer boundary. Note that z′0 lies
on the surface of the cone extended beyond the larger
boundary.

Equation (6) again yields the translational velocity of

the vortex ṙ0 = v0 φ̂0, where

v0 =
~

2Mr0

[
iα
ϑ′1[−iα ln(r0/R2), (R1/R2)α]

ϑ1[−iα ln(r0/R2), (R1/R2)α]
− 1

]
(31)

defines the velocity v0 (it is real, despite the explicit ap-
pearance of i). The vortex moves uniformly around the
bounded cone at fixed r0. In the limit α → 1, this ex-
pression properly reduces to that for a planar annulus,
given in Eq. (B4) of Ref. [3].

Figure 7 shows v0(r0) for typical values of the cone
parameter α. When r0 approaches R2, the outer image
dominates and the vortex moves rapidly in the positive
direction. In contrast, the behavior for r0 → R1 depends
on α. For not-too-large α & 1, the inner image dominates
and the vortex simply slows and then reverses, moving in
the negative direction as r0 → R+

1 . For larger α, however,
the translational velocity initially increases with decreas-
ing r0 because of the factor r−1

0 in Eq. (31). Eventually,
the inner image dominates and the vortex then moves in
the opposite direction.
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For the special choice r0 =
√
R1R2 (the geomet-

ric mean of the inner and outer radii), the identity
−iϑ′1(−i ln

√
q, q) = ϑ1(−i ln

√
q, q) readily yields the

simple result

v0 =
~ (α− 1)

2M
√
R1R2

, (32)

which is the same as Eq. (8) for an unbounded cone.

VI. OUTLOOK AND CONCLUSIONS

Our study of superfluid vortex dynamics on a cone
with opening angle θ = arcsin(1/α) starts from a planar
sector with opening angle 2π/α ≤ 2π, so that α ≥ 1. For
a complex variable z on the sector, a simple conformal
transformation Z(z) = zα maps this sector onto the full
plane.

A. Conjecture for sector with 0 < α < 1

From this perspective of such a planar sector, it is rea-
sonable to ask what happens when α becomes smaller
than 1, remaining real. For definiteness, consider the
rational number α = p/q where p and q are co-prime
numbers and p < q. The sector now has opening angle
2π/α = 2πq/p that exceeds 2π and thus extends beyond
the single plane with an overlapping surface. The same
conformal mapping Z(z) = zα = zp/q now has a Rie-
mann surface with q sheets forming a closed cyclic struc-
ture. The simplest case is α = 1/2, which leads to a
two-fold closed structure for the Riemann surface. An
irrational value of α leads instead to a Riemann surface
which never folds onto itself.

For such an overlapping sector, it appears that the
preceding formalism determining Eqs. (8) and (10) for
the induced vortex motion on the sector remains valid
even for α < 1. In particular, a positive vortex should
now move in the clockwise direction because α − 1 is
negative.

The more difficult question is what, if any, three-
dimensional surface corresponds to a sector of the plane
with opening angle 2π/α and 0 < α < 1. Evidently
this sector overlaps at least part of the plane more
than once. The inverse definition sin θ = 1/α requires
that θ become complex with θ = π/2 + iλ, and real
sin θ = coshλ = 1/α > 1. Correspondingly, cos θ =

−i sinhλ = −i sgnλ
√

1− α2/α is pure imaginary. For
this mapping, the definition z = r cos θ yields an imagi-
nary value for the three-dimensional vertical coordinate
of what was a physical cone for α > 1. Hence there may
well be no simple three-dimensional real physical surface
corresponding to the planar sector with α < 1.

B. Comparison with previous work

Vortex dynamics on a plane is an old subject dating
back over a century [9]. The plane is flat, so that the
question of surface curvature never arises, and such stud-
ies are widely applied to quantized vortices in superfluid
4He [10].

Most of the earlier studies of vortices on curved sur-
faces focused on the total energy and its dependence on
the location of the singularities of the relevant fields [1, 2,
6, 7, 11, 12]. This concentration on the energy yields use-
ful thermodynamic information, but it ignores the very
interesting question of the dynamical motion of such su-
perfluid vortices.

The generalization to vortices on curved surfaces has
involved two distinct topological situations. Here and in
Ref. [3], we considered regions with multiply connected
topology and associated winding numbers, specifically a
cylinder and a cone. In each case, we studied the asso-
ciated dynamics of both a single vortex and two vortices
(particularly a neutral vortex dipole). The situation on a
compact surface such as a sphere differs in that the total
vortex charge must vanish [1, 2, 9].

To our knowledge, the only other relevant discussion of
vortex dynamics on a curved surface is Secs. 80 and 160 of
Ref. [9], which considers the case of vortices on a sphere.
In addition to the restriction to a vortex dipole with zero
net charge, Lamb quotes the result for the translational
velocity of a vortex dipole on a sphere, based on Kirch-
hoff’s much earlier electrical studies of a thin spherical
conducting layer (see Sec. 80 of Ref. [9]).

C. Conclusions

We have presented here a description of the dynam-
ics of superfluid vortices on the surface of a cone. We
have demonstrated that single vortices precess uniformly
around the symmetry axis of the cone (hence conserv-
ing self-energy), while configurations with two vortices
remain quasiperiodic because of two conserved quanti-
ties. As α varies between 1 and +∞, the surface of
a semi-infinite cone interpolates smoothly between the
whole complex plane and an infinite thin cylinder. In
the two limits, we have shown explicitly that the results
presented here reproduce those well-known behaviors. As
a final remark, we note that our previous results on cylin-
drical surfaces may prove very useful to understand the
physics at play in the very recent experiment that studied
superfluid 4He adsorbed on carbon nanotubes [13, 14].
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Appendix A: Vortex motion on a cylinder

We here review the complex potential for a single vor-
tex on a cylinder. The most straightforward approach [7]
is to use a conformal map, which links the whole plane
(with a coordinate Z) to a periodically-repeating strip of
width 2πR (with a coordinate z):

z = −iR logZ ←→ Z = eiz/R. (A1)

The action of this map is shown in detail in Fig. 8. In
particular, the negative real axis of the complex plane
maps to the two infinite sides of the strip, located at
coordinates x = ±πR. The strip (shown in the cen-

tral panel) features periodic boundary conditions, and
therefore may be folded onto a three-dimensional cylin-
der (shown in the right panel). This procedure does not
introduce any distortion, so that the transformation is
conformal. The coordinates {rx, ry, rz} on the cylinder
are obtained from the coordinates {x, y} on the strip by
the obvious relations rx = R cos(x/R), ry = R sin(x/R),
and rz = y.

The conformal map Eq. (A1) may be combined with
the complex potential on the plane, Eq. (1), to obtain the
corresponding potential on the strip and on the cylinder
for a vortex at z0:

Fstr(z) = Fcyl(z) = ln
(
eiz/R − eiz0/R

)
. (A2)

Results for complex potentials, core velocities and inter-
action energies for finite and infinite cylinders were given
in our previous work, Ref. [3]. Therein was also a de-
tailed discussion of the close connection of these results
with those found earlier in Ref. [8] for the topologically
equivalent case of vortices on a planar annulus.
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FIG. 8. Conformal map to a strip and cylinder. The map z = −iR logZ sends the complex plane Z (left) onto a strip
of width 2πR (center). Different choices for the branch cut of the logarithm yield equivalent strips of equal width, displaced
along x by an arbitrary amount. Any of these strips may be folded onto a three-dimensional cylinder (right). The map is
conformal, so that lines of constant modulus |Z| (black) and lines of constant phase φ (white) of the source variable on the
plane Z = |Z|eiφ are orthogonal in all panels. The Hue coloring of the maps corresponds to the phase of the coordinate on the
source plane, φ = Arg(Z).
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