
R E S EARCH ART I C L E

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC
QUANTUM PHYS ICS
1Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark.
2School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia.
3ICFO—The Institute of Photonic Sciences, 08860 Castelldefels (Barcelona), Spain. 4De-
partment of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark.
5London Centre for Nanotechnology, Gordon Street, London WC1H 0AH, UK.
*Corresponding author. E-mail: jesper.levinsen@monash.edu

Levinsen et al. Sci. Adv. 2015;1:e1500197 24 July 2015
2015 © The Authors, some rights reserved;

exclusive licensee American Association for

the Advancement of Science. Distributed

under a Creative Commons Attribution

License 4.0 (CC BY). 10.1126/sciadv.1500197
Strong-coupling ansatz for the one-dimensional
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Amajor challenge inmodern physics is to accurately describe strongly interacting quantummany-body systems.
One-dimensional systems provide fundamental insights because they are often amenable to exact methods.
However, no exact solution is known for the experimentally relevant case of external confinement. We propose
a powerful ansatz for the one-dimensional Fermi gas in a harmonic potential near the limit of infinite short-range
repulsion. For the case of a single impurity in a Fermi sea, we show that our ansatz is indistinguishable from nu-
merically exact results in both the few- and many-body limits. We further derive an effective Heisenberg spin-chain
model corresponding to our ansatz, valid for any spin-mixture, within which we obtain the impurity eigenstates
analytically. In particular, the classical Pascal’s triangle emerges in the expression for the ground-state wave function.
As well as providing an important benchmark for strongly correlated physics, our results are relevant for emerging
quantum technologies, where a precise knowledge of one-dimensional quantum states is paramount.
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One-dimensional (1D) systems occupy a unique place in strongly
correlatedmany-body physics, asmany are exactly solvable viamethods
such as the Bethe ansatz. Likewise, the exactly solvable harmonic os-
cillator plays a central role in quantum mechanics. However, when
one combines these two fundamental models and considers interact-
ing fermions in a 1Dharmonic potential, there is no known solution in
general (1).Whereas the problemmay be solved analytically for 2 par-
ticles (2) and numerically up to ~10 particles (3–8), the calculation
rapidly becomes untenable beyond that. Recent theoretical works have
proposed analytic forms of the lowest energy wave functions near the
Tonks-Girardeau (TG) limit of infinitely strong contact interactions
(9–11), but these do not match exact numerical studies (3–5) once
the particle number exceeds three. Here, we present a novel, highly
accurate ansatz for the wave function of the two-component 1DFermi
gas in a harmonic potential with strong repulsive interactions.

Harmonically confined 1D systems have received a considerable
amount of interest, particularly since the experimental realization in
ultracold atomic Bose (12, 13) and Fermi gases (14–18). Experimen-
talists have trapped fermionic 6Li atoms in a 1D waveguide, with a
high degree of control over both the number of particles in two hyper-
fine states and the interspecies interaction strength. This allows one to
study the evolution from few to many particles, as well as the possi-
bility of magnetic transitions as the interactions are tuned through the
TG limit. The approach we propose here provides a way to tackle the
regime near the TG limit, which has been investigated in a recent ex-
periment (15). In this case, the ground-state manifold in the confined

system consists of
N↑ þ N↓

N↓

� �
nearly degenerate states, whereN↑ (N↓)

is the number of spin-↑ (spin-↓) particles. For the “impurity” problem
consisting of a single ↓ particle (N↓ = 1) in a sea ofN↑majority particles,
we generate all these states in an essentially combinatorial manner. We
show that the overlap between our ansatzwave function and exact states
obtained by numerical calculations exceeds 0.9997 for N↑ ≤ 8. In par-
ticular, the overlap with the exact ground state for large repulsive inter-
actions is found to extrapolate to a value ∼0.9999 as N↑ → ∞. This
remarkable accuracy shows that our ansatz effectively solves the strong-
ly interacting single ↓ problem in a harmonic potential, from the few- to
the many-body limit.

We have furthermoremapped the strongly interacting 1Dproblem
onto an effective Heisenberg spin chain of finite length (5, 19, 20), and
we derive an analytical expression for the Hamiltonian within which
our ansatz is exact. In this case, our ansatz for the impurity wave
functions in the spin basis corresponds to discrete Chebyshev polyno-
mials. In accordance with the orthogonality catastrophe (21), we find
that the overlapwith the noninteractingmany-body ground state (that
is, the quasiparticle residue) tends to zero in the thermodynamic limit
N↑ → ∞. However, surprisingly, in this limit, the ground-state prob-
ability distribution of the impurity is a Gaussian only slightly broad-
ened comparedwith the noninteracting ground state. As we argue, our
effective spin model is expected to accurately describe any N↓, N↑,
opening up the possibility of addressing the strongly interacting 1D
Fermi gas with powerful numerical methods for lattice systems. We
also discuss how our results can be extended to higher excited states
and how they may be probed in cold-atom experiments. Our findings
are of fundamental relevance to emerging quantum technologies where
an accurate knowledge of 1D quantum states is needed, such as for en-
gineering efficient state transfer (22) and for understanding relaxation
and thermalization in out-of-equilibrium quantum systems (23).
RESULTS

The model
We considerN↑ fermions in spin state ↑ andN↓ fermions in spin state
↓, both with massm, confined in a 1D harmonic potential. The total
number of particles is written as N↑ + N↓ = N + 1, which is convenient
when we consider the impurity problem below. The Hamiltonian is thus
H ¼ ∑
N

i¼0
−
ℏ2

2m

∂2

∂x2i
þ 1

2
mw2x2i

� �
þ g∑

i<j
dðxi − xjÞ ð1Þ
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where the coupling g quantifies the strength of the short-range interac-
tions and w is the harmonic oscillator frequency. Note that particles with
the same spin do not interact because their wave function vanishes when
|xi − xj |→ 0 due to antisymmetry under particle exchange. BecauseH
commutes with the total spin operator, the eigenstates have well-defined
spin projection Sz = (N↑ −N↓)/2 and total spin S. In the following, we use
harmonic oscillator units where w = m = ℏ = 1.

In the TG limit, the coupling strength g→∞ and the system simplifies
significantly owing to the form of the boundary conditions when two
particles approach each other. Specifically, for a given wave function
y(x), the infinite repulsion requires limxij → 0yðxÞ ¼ 0, with xij ≡ xi − xj,
the relative coordinate for any pair of fermions with opposite spin
and x = (x0, x1,…, xN). Identical fermions always obey this condition,
as mentioned above. Because all particles experience the same bound-
ary conditions, the ground-state manifold for a system with fixed Sz

contains
N↑ þ N↓

N↓

� �
degenerate states, corresponding to the number

of unique configurations of ↑ and ↓ particles.
The simplest eigenstate of the Hamiltonian (Eq. 1) is the fully ferro-

magnetic state, corresponding to themaximum total spin S = (N + 1)/2.
In this case, the spin part of the wave function is always symmetric re-
gardless of Sz, and thus, the wave function in real space must be
antisymmetric. Specifically, the wave function takes the form of a Slater
determinant of single-particle harmonic oscillator wave functions and
can be written (24)

y0ðxÞ ¼ N N

�
∏

0≤i<j≤N
xij

�
e
−∑N

k¼0x
2
k=2 ð2Þ

with normalization

N N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN þ 1Þ!p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
1
2N Nþ1ð Þ

p
1
2 Nþ1ð Þ∏N

n¼0n!

s

The ferromagnetic state corresponds to that of N + 1 identical fermions,
and thus, its energy is E0 ¼ ∑Nn¼0ðnþ 1=2Þ − 1=2 ¼ NðN þ 2Þ=2,
where we subtract the center-of-mass zero point energy. Furthermore,
it is an eigenstate for all g because thewave function antisymmetry guar-
antees that it vanishes when xij → 0 so that it does not experience the
particle-particle interaction.

For a given Sz (corresponding to fixedN↑ andN↓ ), the remaining
eigenstates with the same energy E0 in the TG limit may be charac-
terized by other values of S. For instance, for N↑ = N↓ = 1, there are
two states, characterized by either S = 0 or S = 1. However, for general
particle number, spin alone is not sufficient to determine the states
with S < (N +1)/2 because the degeneracy of the ground-state manifold

is
N↑ þ N↓

N↓

� �
, whereas the number of different S for a given Sz is

1 + min(N↑, N↓). Thus, to construct a unique orthogonal basis of ei-
genstates in the TG limit, we must consider how the states in the
ground-state manifold evolve as g → ∞, as illustrated in Fig. 1. We
mostly focus on the impurity problem where we have one ↓ particle
at position x0 andN ↑ particles at positions xi with 1≤ i≤N . In this
case, we haveN eigenstates with spin S = Sz = (N − 1)/2, in addition to
the ferromagnetic state.
Levinsen et al. Sci. Adv. 2015;1:e1500197 24 July 2015
Ground-state manifold in the TG limit
To construct the wave functions for the impurity problem with
S ¼ Sz ¼ ðN − 1Þ=2, it is useful to define a complete (but not orthog-
onal) set of basis functions involving ϕ0 = y0(x) and the N states:

ϕl ¼ y0ðxÞ ∑
1≤i1<⋅⋅⋅<il≤N

si1 ⋅⋅⋅sil ; 1 ≤ l ≤ N ð3Þ

where si ≡ sign (xi0). For simplicity, we omit the dependence ofϕl on the
coordinates. Each sign function simply replaces a zero-crossing in the
Slater determinant (Eq. 2) with a cusp at the position where the impurity
meets a majority (↑) particle (xi0 = 0). As an example, forN = 2, we have
basis functions:

ϕ0¼N 2 x12x01x02 e−ðx
2
0þx21þx22Þ=2

ϕ1¼N 2 x12ðjx01jx02 þ x01jx02jÞ e−ðx20þx21þx22Þ=2

ϕ2¼N 2 x12jx01x02j e−ðx20þx21þx22Þ=2

The basis functions are clearly degenerate with the ferromagnetic state
(Eq. 2) when g→∞ because the interaction energy vanishes, whereas
the energy of motion in the harmonic potential is the same for all ϕl.
This can be shown by noting that for any ordering of the particles
(say x0 < x1 < … < xN ) we have ϕl º y0 (x). Thus, all eigenstates
of the ground-state manifold in the TG limit must be linear combi-
nations of the basis functions. Note that, alternatively, we could have
chosen a basis set whose functions are non-zero only for a particular
ordering of particles as in (25).

The central question we address here concerns the nature of the
eigenstates in the vicinity of the TG limit; that is, we wish to know the
wave functions and energies perturbatively in the small parameter 1/g.
This allows one to uniquely define the eigenstates at g → ∞ as being
those that are adiabatically connected to the states at finite g. Before pro-
ceedingwith degenerate perturbation theory, it is instructive to consider
the structure of the exact eigenstates yl (up to corrections of order 1/g)
for N = 1, (2), and N = 2, (9),

N ¼ 1 : y0 ¼ ϕ0; y1 ¼ ϕ1

N ¼ 2 : y0 ¼ ϕ0; y1 ¼
ffiffiffi
3

r
ϕ1; y2 ¼

ffiffiffi
1

r
ϕ0 − 3ϕ2ð Þ ð4Þ
0 1

ψ

ψ

ψ
ψ

Fig. 1. Energy levels in the Tonks-Girardeau limit.We display the exact
energies (y |H |y ) (red) and the result of our ansatz 〈ỹ |H|ỹ〉 (blue dashed),
l l l l

given by E0 − Cl=g in this limit, for the case of one ↓ particle and N = 3 ↑
particles. For g< 0, there is also a two-body bound state at negative energies
(not shown).
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The subscripts on the wave functions order these in terms of decreas-
ing energy for small but positive 1/g. Note that the eigenstates split into
two orthogonal sets, which are even or odd with respect to parity be-
cause the Hamiltonian commutes with the parity operator. Referring to
Fig. 1 and focusing on the repulsive case g > 0, we see that the ferro-
magnetic state y0 has the maximum energy within the manifold (11),
whereas the ground state yN has the lowest total spin, that is, S = Sz, in
accordancewith the Lieb-Mattis theorem (26). Physically, the cusps in the
wave function for g→∞ can easily be shifted from zero, which decreases
the kinetic energy and thus leads to a lower energy compared with the
ferromagnetic state. Indeed, we see two patterns emerging: y1 only
contains states with one cusp, and only the ground state yN contains
the state with the maximal number of cusps. These observations suggest
that the systemmay lower its energy by successively acquiringmore cusps
in the wave function.

Inspired by the above considerations, we now propose the follow-
ing strong-coupling ansatz for the impurity eigenstates of the ground-
state manifold in the vicinity of the TG limit:

• For any N, the exact wave function yl essentially corresponds to ỹl , a
superposition of the basis functions ϕk restricted to k ≤ l.

In other words, the wave functions are obtained by a Gram-Schmidt
orthogonalization scheme on the set of basis functions {ϕk}: ỹ1 is ob-
tained by adding one cusp to y0, ỹ2 is obtained by adding one more
cusp and then orthogonalizing it to ỹ0, and so on. We emphasize
that the ansatz allows one to obtain the entire ground-state manifold
using linear algebramanipulations only. Thus, one can go far beyond
the limit N ≲ 9 of current state-of-the-art calculations (4). We will
see that the ansatz allows us to obtain analytic expressions for all wave
functions in the ground-statemanifold for anyN.Wewill show that the
ansatz is remarkably accurate compared with exact numerical results,
and that it allows one to calculate several observables analytically, even
in the many-body limit.

The procedure for constructing our ansatz wave functions ỹ as out-
lined above can be performed straightforwardly even for large N, by
noting that the inner products of the basis functions (Eq. 3), Fln ≡
〈ϕl|ϕn〉, may be calculated combinatorially (see Methods).

Perturbation theory around the TG limit
To demonstrate the accuracy of our ansatz, we now turn to the ex-
plicit solution of the Schrödinger equation in the vicinity of the TG
limit. Because here there are N + 1 degenerate states, we apply
degenerate perturbation theory and obtain the ground-state mani-
fold by means of finite-matrix diagonalization, in a similar manner
to (4, 5). The energy can be written as E≃ E0 − C/g, where C is the 1D
contact density (27–29). From the Hellmann-Feynman theorem, we
then obtain

C ¼ −
dE

dðg−1Þ
����
g→∞

¼ −
�

∂H
∂ðg−1Þ

�����
g→∞

≡
〈YjH′jY〉

〈YjY〉

which defines the perturbation H′ due to a non-zero 1/g. The state
|Y〉 is a linear combination of the basis states {ϕl} of the ground-state
manifold: |Y〉 = ∑nan|ϕn〉. To obtain the eigenstates, we require |Y〉 to

be a stationary state, that is,
dC
da*l

¼ 0, resulting in the matrix equation
Levinsen et al. Sci. Adv. 2015;1:e1500197 24 July 2015
F−1H′a ¼ Ca, with C the eigenvalue (contact density) of the state
|Y〉. The matrix elements of H′ are

H′ln ¼ ∑
N

i¼1
∫dx d xi0ð Þ ∂ϕl

∂xi0

����xi0¼0
þ

xi0¼0−

∂ϕn

∂xi0

����xi0¼0
þ

xi0¼0−
ð5Þ

(see Methods).
For N = 1 (N = 2), the evaluation of H′ is straightforward and

yields H′11¼2
ffiffiffiffiffiffiffiffi
2=p

p ðH′11 ¼ H′22 ¼ 9=
ffiffiffiffiffi
2p

p Þ, whereas all other ele-
ments vanish. Thus, we find

N ¼ 1 :
C0
C1

� �
¼

ffiffiffi
8

p

r
0
1

� �
ð6Þ

N ¼ 2 :
C0
C1
C2

0
@

1
A ¼ 27

8
ffiffiffiffiffi
2p

p
0
1
3

0
@

1
A ð7Þ

where Cl ≡ 〈yl|H′|yl〉 is the contact coefficient corresponding to the
state yl. All the eigenstates for N≤ 2 are uniquely determined by the two
symmetries of parity and spin, so that the ratios of Cl and the general
structure of the wave functions in Eq. 4 hold for any confining potential
that preserves parity and spin. However, these symmetries alone are not
sufficient to determine the eigenstates for N > 2, and therefore N = 3 will
provide a nontrivial test of our ansatz. In this case, the coefficients of H′
and the eigenstates may still be evaluated analytically, but their form is
sufficiently complicated that we relegate these to Methods. Converting
long analytical expressions into numerical values for brevity, we obtain

N ¼ 3 : y0 ¼ ϕ0

y1 ¼
ffiffiffiffiffiffiffiffi
1=5

p
ð1:00188ϕ1 − 0:00941ϕ3Þ

y2 ¼ 1=2ðϕ0 − ϕ2Þ

y3 ¼
ffiffiffiffiffiffiffiffiffiffi
1=20

p
ð0:99246ϕ1 − 4:99996ϕ3Þ

ð8Þ

whereas the contact coefficients are

N ¼ 3 :

C0
C1
C2
C3

0
BB@

1
CCA ¼ 1:18067

0
1:00305
3:02818

6

0
BB@

1
CCA ð9Þ

These contact coefficients determine the energy splitting shown in Fig.
1 and they agree with those obtained in (5). For N ≥ 4, we resort to a
numerical evaluation of the matrix elements of H′, which may be
calculated efficiently using a novel method outlined in Methods.

Our ansatz, however, is far simpler than the brute-force approach above.
Whereas the evaluation of the multidimensional integral in Eq. 5 quickly
becomes untenable as N increases above ∼10, the implementation of our
ansatz is a basic exercise in linear algebra: Applying our Gram-Schmidt or-
thogonalization scheme, we find the states

N ¼ 3 : y
∼
0 ¼ ϕ0; y

∼
1 ¼

ffiffiffi
1

5

r
ϕ1; y

∼
2 ¼ 1

2
ϕ0 − ϕ2ð Þ

y
∼
3 ¼

ffiffiffiffiffi
1

20

r
ϕ1 − 5ϕ3ð Þ

ð10Þ
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Comparing Eq. 10 with Eq. 8, we see that our ansatz is extremely ac-
curate, with only a minute deviation from the exact result for ~y1 and
~y3 (y0 and y2 are determined exactly from parity and spin). We note
that our proposed wave functions are identical to those obtained nu-
merically in (3), illustrating that the results of our ansatz are essentially
indistinguishable from numerical calculations.

We now explicitly demonstrate that the very high accuracy of
our ansatz also holds for higher particle number N and that it
even seems to hold in the many-body limit. A natural measure of
its accuracy is the wave function overlap |〈yl|~yl〉| between the exact
eigenstates yl and our proposed ones ~yl . Writing the wave functions
as yl ¼ ∑N

n¼0 Llnϕn and y∼l ¼ ∑N
n¼0 L

∼

ln ϕn, the overlap is simply
jðL∼ FLT Þl lj. For the two nonexact states with N = 3 discussed above,
we then find this quantity to be 0.999993, where we remind the reader
that this is the numerical value of an analytic result (seeMethods). Strik-
ingly, we find that the overlap exceeds 0.9997 for all states up to N = 8,
with the error being largest for the states “intermediate” between the
ferromagnetic state y0 and the ground state yN. In Fig. 2, we illustrate
how the wave function overlaps for the ~y1 and ~yN always exceed
0.99994. In addition, the overlap in the ground state appears to extra-
polate to a value ∼0.9999 as N→∞. Our ansatz is therefore essentially
indistinguishable from “numerically exact”methods, even in themany-
body limit. This shows that our ansatz effectively solves the strongly in-
teracting 1D impurity problem for general N.

Of particular interest is the stateyN, the ground state for repulsive
interactions. Girardeau proposed (10) that this state is simply given by
the state with themaximumnumber of cusps inserted, that is,yG =ϕN.
As shown in the inset of Fig. 2, the overlap of Girardeau’s proposed
state with the exact ground state is 76% for N = 8, and it most likely
tends to zero as N→∞. Thus, our ansatz is a significant improvement
compared to previous proposals for the ground-state wave function.

We now turn to the contact coefficients of theN + 1 energy levels in
the ground-state manifold, that is, the splitting of the spectrum at finite
coupling. In Fig. 3, we show how the energy takes the following approx-
imate form.
Levinsen et al. Sci. Adv. 2015;1:e1500197 24 July 2015
 N
El ≃ E0 −
CN
g

lðl þ 1Þ
NðN þ 1Þ ð11Þ

Comparing with Eqs. 6, 7, and 9, we see that this expression is exact for
N = 1 and 2, whereas it holds to within 3.0% forN≤ 8. We show in the
next section that the spectrum given by Eq. 11 is intimately linked with
an effective Heisenberg spin Hamiltonian within which our ansatz is
exact.

Effective Heisenberg spin chain
Wenowdiscuss how the 1Dproblem can bemapped onto aHeisenberg
spinmodel (5, 19, 20). This enables us to determine the statesyl

~ analyt-
ically and also allows us to generalize our ansatz for the impurity prob-
lem to any N↓.

In the limit g → ∞, the system consists of impenetrable particles
because the wave function must vanish when two particles approach
each other. Thus, if the particles are placed in a particular order, they
should retain that ordering as long as the repulsion is infinite. This
allows us to consider the system in the TG limit as a discrete lattice
of finite length N + 1, where the particle furthest to the left is at site
i = 0, the next particle is at site i = 1, and so on. A small but finite value
of 1/g then allows neighboring particles to exchange position, intro-
ducing a nearest-neighbor spin interaction in the lattice picture. We
can thus write the Hamiltonian in the lattice as

H ≃ E0 −
H′

g
¼ E0 þ CN

g
∑
N−1

i¼0

JiS
i ⋅ Siþ1 −

1

4
Ji

� �
ð12Þ

where Si is the spin operator at site i and Ji is the nearest neighbor ex-
change constant, which can in general depend on i (4, 30). Subtracting
the constant in each term of the sum ensures that the ferromagnetic state
has energy E0. The Hamiltonian is valid to linear order in 1/g and the
general form holds for any external potential.

The couplings Ji in theHeisenbergmodel (Eq. 12) can be determined
by considering the single ↓ impurity problem in a new basis of position
ovem
ber 5, 2015
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Fig. 2. Accuracy of the ansatz. Overlaps between our ansatz ~yl and the
exact wave functions yl for majority particle numbers N ≤ 8. For the ferro-

magnetic state, this always equals 1 (black line). The red and blue dots depict
the overlap for ~y1 and ~yN (ground state), respectively. These are both 1 for
N = 2 because these states are uniquely determined by spin and parity,
whereas they are both 0.999993 for N = 3. The extrapolations (dashed lines)
are least-squares fits of the data points to cubic polynomials. Inset: Thewave
function overlap of Girardeau’s proposed state (10) with the exact ground state.
1 2 3 4 5 6 7 8

1

3

6

10
15
21
28
36

Fig. 3. Contact coefficients of the ground-state manifold. The con-
tact coefficients (blue dots) of the exact eigenstates y in the Tonks-
l

Girardeau regime, controlling the splitting of the energy levels at finite
but large coupling. The gray lines represent the approximate relationship

Cl
CN ¼ lðl + 1Þ

NðN + 1Þ; see Eq. 11.
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states |↓i〉 with 0 ≤ i ≤ N. The lattice position i corresponds to the po-
sition of the impurity relative to the N majority particles. The position
states are orthonormal, 〈↓i|↓j〉 = dij, and can be related back to ϕl (see
Methods). The perturbationH′ may then be evaluated in the position
basis of the impurity by inserting a complete set of eigenstates, yielding

〈↓ijH′j↓j〉 ¼ ∑
N

l¼0
〈↓ijyl〉Cl〈ylj↓j〉 ð13Þ

The matrix elements in Eq. 13 provide an explicit construction of the
Heisenberg Hamiltonian, Eq. 12.

We now determine the Heisenberg Hamiltonian within which
our strong-coupling ansatz for the eigenstates is exact. Proceeding
via “reverse engineering,” we form the effective Hamiltonian by re-
placing ylwith our ansatz wave functions ỹl in Eq. 13. By inspection
of the effective Hamiltonian for allN≤ 100, we find that wemust use

the approximation Cl ≃ CN lðl þ 1Þ
NðN þ 1Þ from Eq. 11 in Eq. 13 to obtain

a Hamiltonian restricted to nearest-neighbor interactions, and we ob-
tain the couplings

Ji ¼
− i − N−1

2

	 

2 þ 1

4 ðN þ 1Þ2
NðN þ 1Þ=2 ð14Þ

The exchange constants take the form of an inverted parabola and
are thus reminiscent of the real space harmonic oscillator potential
(see Fig. 4). The form of the coefficients means that the impurity at
small positive 1/g may minimize its energy by occupying primarily
the center of the spin chain while alternating the sign of the wave
function on the different sites. Contrast this with the ferromagnetic
state, which is a completely symmetric function of the impurity position

jy0〉 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

N þ 1
p ∑N

i¼0j↓i〉. This is equivalent to the state obtained by

applying the total spin lowering operator S− ¼ ∑iSi− to the spin po-
larized state with Sz = (N + 1)/2. Note that this symmetric spin function
corresponds to an antisymmetric wave function in real space.
Levinsen et al. Sci. Adv. 2015;1:e1500197 24 July 2015
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The Heisenberg model obtained from our ansatz is exact for N =
1 and N = 2, whereas it is approximate for larger N. In particular,
for N = 3, our ansatz yields

J0
J1
J2

0
@

1
A ¼ 1

2

1
4=3
1

0
@

1
A ð15Þ

which should be compared with the result obtained by using the exact
eigenstates and energies in Eq. 13, yielding

J0
J1
J2

0
@

1
A ¼ 1

2

1:009
1:325
1:009

0
@

1
A ð16Þ

The error in the coefficients is thus less than 1%. Note that the values in Eq.
16 agreewith those obtained in (5). For largerN≤8,we find that the error in
the coefficientsat thecentralsitesremains≲0.3%,whereas theerrorat theedges
of the spin chain remains≲5%. This shows that our ansatz is most accurate
when the impurity is near the center of the harmonic potential, which is al-
ways the case for the ground-state wave function as we demonstrate below.

Our effective “harmonic”Heisenberg model allows us to determine
the general solution for the single ↓ impurity within our ansatz analyt-
ically. We obtain

jy∼ l〉 ¼ hðNÞ
l ∑

N

i¼0
∑
l

n¼0
ð−1Þn l þ n

n

� �
N − n
N − l

� �
i
n

� �
j↓i〉 ð17Þ

for the eigenstates in the ground-state manifold, where hðNÞ
l ¼�

N þ l þ 1
2l þ 1

� �
2l
l

� ��−1=2
is a normalization constant. This result

may be verified by direct application of the Hamiltonian (Eq. 12),
and follows from the basis functions ϕl being discrete polynomials of
the variable (i − N/2) of maximum order l in the spin chain. The
Gram-Schmidt procedure of our ansatz then yields the orthonormal
discrete polynomials ~yl withmaximal order l in the variable (i −N/2).
The functions inEq. 17arewell known in the fieldof approximation theory
as discrete Chebyshev polynomials—see, for example, (31). The analytical
form for the ansatzwave functions provides a simple solution to theGram-
Schmidt procedure for general N. In particular, the ground-state wave
function is simply a (sign-alternating) Pascal’s triangle:
015
jy∼N 〉 ¼
2N
N

� �−1=2

∑
N

i¼0
ð−1Þi N

i

� �
j↓i〉 ð18Þ

Note that, in real space, this wave function does not change sign
under the exchange of the impurity with a majority particle.

From the analytical expression (Eq. 18), we can determine the prob-
ability that the impurity is at position i relative to the majority par-
ticles in the ground state. We obtain PN ðiÞ ¼ j〈↓ijyN 〉j2 ≃ j〈↓ij ~yN 〉j2 ¼
2N
N

� �−1
N
i

� �2

. This prediction is dramatically different from the

constant probability distribution PG(i) = 1/(N + 1) predicted by Girardeau’s
proposed ground state, which in the spin-chain model takes the form

jyG〉 ¼ ðN þ 1Þ−1=2∑Ni¼0ð−1Þiji〉. Indeed, we see that j〈y∼N jyG〉j2 ≈ffiffiffiffiffiffiffiffiffi
p=N

p
as N → ∞. Thus, yG is inaccurate for the ground state in

the harmonic potential.
0.5

0

0.5

0 10 20 30 40 50 60 70 80 90 100

ψ

Fig. 4. Exchange constants and ground state of theHeisenbergmodel.
Illustration of the nearest-neighbor exchange constants (Eq. 14) of the spin

Hamiltonian (Eq. 12) for N = 100. We also show the ground-state wave
function (Eq. 18) within our ansatz (green dots).
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Finally, we emphasize that the mapping to the effective Heisenberg
model allows us to find solutions for anyN↑ andN↓: one simply needs
to calculate the eigenstates of the Hamiltonian (Eq. 12) with coeffi-
cients given by Eq. 14. For instance, in the case of N↑ = N↓ = 2, the
ground-statemanifold is spanned by the six states Si−S

j
−j↑↑↑↑〉with i≠ j.

On this basis, we find overlaps≳0.99998 between exact and approx-
imate eigenstates, and our results are in excellent agreement with the
wave functions obtained numerically in (3). Furthermore, within our
ansatz, the contact coefficients of the six states take the form
C3ð0; 1; 5−

ffiffiffi
7

p
; 3; 6; 5þ ffiffiffi

7
p Þ=6whereC3 is the contact coefficient from

the (N↑, N↓) = (3, 1) problem—see Eq. 9. As expected, because the
Hamiltonian commutes with the spin operator, the spectrum contains
thatof the single-impurityproblemand, inaccordancewith theLieb-Mattis
theorem (26), the ground state has S = 0.

Approaching the many-body limit
The fact that the wave function overlaps appear to extrapolate to a
numerical value very close to 1 (see Fig. 2) indicates that our ansatz is
also highly accurate in the many-body limit. Thus, we now investigate
the limit N→ ∞ for the impurity ground state (Eq. 18) at large repul-
sion. We focus on properties that depend on the impurity probability
distribution in the bulk of the system.

The first such quantity is the contact coefficient, as shown in Fig. 5.
We compare it with the expression CN ≈ 8

ffiffiffiffiffiffiffiffiffi
2N3

p
=ð3pÞ corresponding

toMcGuire’s exact solution to the single impurity problem in free space
(32) mapped onto the harmonically confined system using the local
density approximation (8). We see that our prediction for the contact
appears to extrapolate to the Bethe ansatz result in themany-body limit,
thus implying that the local density mapping is valid for the single-
Levinsen et al. Sci. Adv. 2015;1:e1500197 24 July 2015
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impurity ground-state energy. Indeed, this is consistent with the fact
that the impurity ground-state wave function is confined to the central
region of the trap (see Fig. 4) where the density of majority particles
is highest.

We next calculate the probability density of the impurity in real
space, PN(x0) = ∫dx1⋯dxN| yN(x)|

2. This is very complicated to eval-
uate for generalN, but in the thermodynamic limitN→∞, the prob-
ability distribution of the approximate ground-state wave function
(Eq. 18) may be converted into PN(x0). The distribution of majority
particles is unaffected by the presence of the impurity in the thermo-
dynamic limit, and according to the local density approximation, it is

n xð Þ ¼ 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0 − x2

p
, where m0 is the chemical potential at the center

of the harmonic potential. This, in turn, yields N ¼ ∫
ffiffiffiffiffi
2m0

p
−

ffiffiffiffiffi
2m0

p nðxÞdx ¼
m0. The lattice index i in the Heisenberg model corresponds to the
number of majority particles to the left of the impurity; thus, it may
be related to the position in real space via i ¼ ∫x0−∞nðxÞ. Because
∫0−∞nðxÞ ¼ N=2, we can then write:

i − N=2

N
¼ 1

N
∫
x0

0 nðxÞdx ≃
2x0

p
ffiffiffiffiffiffiffi
2m0

p ð19Þ

where we have taken the central part of the harmonic potential with
x0 ≪

ffiffiffiffiffiffiffi
2m0

p
. Substituting this into Stirling’s approximation to the ground-

state probability distribution, PN(i) ≈ 2(pN)−1/2 exp[−(2i − N)2/N], finally
yields the probability density of the impurity particle in the thermo-
dynamic limit:

PN x0ð Þ≃ 2
p

� �3=2
e−8x

2
0=p

2 ð20Þ

Remarkably, upon tuning the system from the noninteracting ground state
at g = 0+ with probability densityPNIðx0Þ ¼ expð−x20Þ=

ffiffiffi
p

p
, the impurity

wave function has only spread out slightly in the TG limit. The broader
distribution may be viewed as an increase in the harmonic oscillator
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Fig. 5. Contact of the ground state in the few- and many-body limit.
Contact coefficient of the ground state at small positive 1/g as a function

of N. The dots are the analytical results for N ≤ 3 and numerical results for
4 ≤ N ≤ 8. We do not show a comparison between the ground-state con-
tact and the perturbation evaluated within our approximate states,
〈
�yNjH′j�yN〉, because the relative error between these is less than 0.05%
for N ≤ 8. The dashed line is McGuire’s free-space solution mapped to the
harmonic potential using the local density approximation—see the dis-
cussion in the main text. Inset: The ground-state contact coefficient in
units of N3/2 and plotted as a function of 1/N to illustrate the possible
convergence to McGuire’s prediction (marked by a triangle). The dashed
line is a cubic fit to our data. We also compare with the expectation value
of Girardeau’s proposed ground state 〈yGjH′jyG〉 (green squares).
ψ
ψ
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Fig. 6. Emergence of the orthogonality catastrophe. Residue of the
wave functionyN as a function ofN. ForN = 1 andN = 2, we find the analytic

results 2/p and 81/(16p2), respectively. The dashed line is 0.89/

ffiffiffiffiffiffiffiffiffiffiffiffi
N + 1

p
. We

do not show a comparison between the residue of the ground state in our
approximation scheme and that of the exact ground state because the
relative error is less than 0.07% for N ≤ 7.
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length by a factor p=2
ffiffiffi
2

p
or as a decreased effective mass. Note that our

predicted probability density is completely different from that of theGir-
ardeau state, n(x0)/N, which equals that of the ferromagnetic state. In par-

ticular, our predicted distribution retains a width
ffiffiffiffiffiffiffiffi
〈x2〉

p
∼ 1 for any N,

whereas for the ferromagnetic state the width is
ffiffiffiffiffiffiffiffi
〈x2〉

p
∼

ffiffiffiffi
N

p
. The nar-

rowwidth of the ansatz ground state compared with the length of the spin
chain, in turn, implies that its overlap with the exact ground-state wave
function could approach 1 in the limit of largeN. For instance, the overlap
with a Gaussian of the same width indeed converges to 1 in the thermo-
dynamic limit.

The small change in the ground-state impurity probability
distribution from the noninteracting to the TG limit appears to sug-
gest that the wave function of the system is only weakly perturbed by
infinite interactions. On the other hand, it is well known that the sys-
tem encounters the orthogonality catastrophe in the thermodynamic
limit, where the state of the system has no overlap with the noninter-
acting state (21). To reconcile these points, it is necessary to consider
the impact of the interactions on the majority fermions, which reshuf-
fles the Fermi sea. This is embedded in the residue Z = |〈yN|yNI〉|

2, that
is, the squared overlap of the ground-state wave function with the non-
interacting ground state at g = 0:
 on N
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yNI xð Þ ¼ N N−1

p1=4
∏

0≤i<j≤N
xij

� �
e−∑

N
k¼0x

2
k =2 ð21Þ

We compute the residue using a numerical method similar to that out-
lined in Methods, and the result is shown in Fig. 6. By fitting, we find
that the residue decreases withN as∼1/

ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
. Intriguingly, the same

scaling of the residue with particle number was predicted for a massive
impurity immersed in a 1D Fermi gas in uniform space (33).

Higher energy manifolds and breathing modes
We have demonstrated that our ansatz is extremely accurate for the
(N + 1)–dimensional ground-statemanifold of the impurity problem to
order 1/g. We now show how it can be extended to states in higher
energy manifolds. It is known that the 2D version of the Hamiltonian
(Eq. 1) is part of a “spectrum generating” SO(2,1) algebra connected
with scale transformations x→ x/l (34). In 1D, this symmetry is broken
for a finite interaction strength because the scaling of the interaction,
gd(x)→ lgd(x), is different than in 2D. The key point, however, is that
the SO(2,1) symmetry is recovered in the TG limit g→∞. We can then
use the technology developed for the SO(2,1) symmetry, suitably adapted
to the 1D case. In particular, one can define an operatorB so that if |n〉 is
an eigenstate with energy En, then jnþ 1〉 ¼ B†jn〉 is an eigenstate with
energyEn+1 =En+ 2 (seeMethods). The spectrum in theTG limit there-
fore consists of towers of states separated by twice the harmonic poten-
tial frequency, where Bj0〉 ¼ 0 for the lowest state in each tower.

Away from the TG limit, each level in these towers is shifted in
energy, and Eq. 11 gives the energy shift of the ground-state manifold
to a very good approximation. Each state in the ground-state mani-
fold represents the lowest state in a separate tower of modes, and we
now use the SO(2,1) algebra to calculate the energy shift of the ex-
cited states in each tower.Within first-order perturbation theory, the
energy shift dEn of the nth excitedmode |n〉 away from its value in the
TG limit is given by
dEn ¼ −
1

g

〈0jBn H′ðB†Þnj0〉
〈0jBnðB†Þnj0〉 ð22Þ
Levinsen et al. Sci. Adv. 2015;1:e1500197 24 July 2015
Note that this result is exact to order 1/g. The expectation values in Eq.
22 can be calculated using operator algebra only, once the so-called
scaling dimension DH′ ofH′ is known. Using Eq. 5, we find
〈ϕl jH′jϕn 〉 ¼
1
l3

〈ϕljH′jϕn〉 ð23Þ

where ϕn(x) = ϕ(x/l)/l(N+1)/2. It follows that the scaling dimension of
H′ is DH′ = 3 in 1D. One can now use Eq. 22 to express the energy
shift of the state |n〉 as a function of the energy shift of all lower states
in the tower (see Methods). The simplest case is the energy shift dE1 of
the first excited breathing state j1〉 ¼ B†j0〉, given by
dE1 ¼ 1þ 3

4E0

� �
dE0 ð24Þ

where dE0 is the energy shift of the N + 1 particle ground state away
from the value E0 = N(N + 2)/2 in the TG limit. Equation 24 predicts
that the energy shift of the first excited mode is larger than the shift of
the state in the ground-state manifold. Physically, this means that the
excited state energy approaches its noninteracting value faster than the
ground state as one moves away from the TG limit. Used in combi-
nation with Eq. 11, Eq. 24 generalizes our ansatz for the spectrum in
the single impurity problem to higher energy manifolds. However, we
emphasize that our results for the excited manifolds only depend on
the energy levels in the ground-state manifold and are not limited to
the impurity problem.

We can compare the prediction of Eq. 24 with the exact solution
to the two-body problem. In 1D, the exact two-body energies E are
determinedby the equationGð3=4 − E=2Þ=Gð1=4 − E=2Þ ¼ −g=2

ffiffiffi
2

p
(2). Close to the TG limit g→∞, we have E = 3/2 + dE0 for a state in the
ground-state manifold and E = 7/2 + dE1 for the first excited state in the
tower, with dEi/E ≪ 1. Expanding the G functions yields dE1/dE0 = 3/2,
which is identical to the result obtained from Eq. 24 when using E0 = 3/2.
This demonstrates explicitly that Eq. 24, valid for anyN, recovers the exact
two-body theory close to the TG limit.

For largeN, it immediately follows fromEq. 24 that the correction
to the energy shift of the first excited manifold goes as 1/N2. Moreover,
this holds for any n≪ N (see Methods). Thus, in the thermodynamic
limit, we find that the dynamic SO(2,1) symmetry extends to finite in-
teractions, up to order 1/g.

The lowest breathing mode frequency has been measured in several
atomic gas experiments (35–37). The results in this section can therefore
be tested experimentally providing a sensitive probe of interactions in
the few-body system.

We note that the approach described in this section is exact to
lowest order in 1/g, and it is completely general. It would for instance
be interesting to apply it to a system of 1D bosons close to the TG limit,
where the frequency of the lowest breathing mode was recently calcu-
lated using a mapping to an effective fermionic Hamiltonian (38).

Radio-frequency spectroscopy
Our results may be probed directly in cold atomic gases using radio-
frequency (RF) spectroscopy, as already applied in the recent exper-
iment (16). Consider a homogeneous RF probe with frequency wrf,
which flips the impurity atom from the hyperfine state |a〉 to the state
|b〉. Within linear response, the RF signal is proportional to
∑
i;f
ðPi − Pf Þj〈 f j∫dx y†

bðxÞyaðxÞji〉j2dðwrf þ Ei − Ef Þ
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where Pi(Pf) is the probability of occupation of the initial |i〉 (final |f 〉)
many-body state, and ys is the field operator for the hyperfine state |s〉.

Assume that the system is initially in a definite state |i〉 and that all
final states are empty. There are two kinds of RF spectroscopy. In di-
rect RF spectroscopy, a = ↓ and the impurity atom interacts with the ↑
atoms in the initial state, which belongs to the interacting many-body
ground-state manifold, whereas the final hyperfine state |b〉 of the
impurity atom does not interact with the majority atoms. There will
then be a peak at wrf = −E0 in the RF spectrum in the TG limit, and
the reduction of the height of the peak from its noninteracting value
gives the quasiparticle residue of the initial state. There will also be
peaks at wrf = −E0 + 2nwith n = 1, 2,… because the initial interacting
wave function has components in excited noninteracting states with
the same parity. The shift of the peak position away from wrf = −E0
gives the energy shift of the many-body ground state when 1/g > 0. In
inverse RF spectroscopy, the initial state |a〉 of the impurity atom
does not interact with the majority atoms, whereas the final state
does with b = ↓ (39). There will then be a peak at wrf = E0 in the RF
spectrum in the TG limit and the shift in position when 1/g > 0 again
gives themany-body energy shift directly. The reduction of the height of
the peak from its noninteracting value gives the quasiparticle residue.
There will also be RF peaks at higher frequencies corresponding to
flipping into the excited interacting states.
 on N
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DISCUSSION

In this work, we investigated in detail the properties of a single im-
purity immersed in a Fermi sea of N majority particles near the TG
limit. By comparing the properties with exact numerical results, we
have demonstrated the impressive accuracy of our strong-coupling
ansatz for arbitrary N. We have furthermore identified the effective
Heisenberg Hamiltonian within which our ansatz is exact, and this
has allowed us to analytically evaluate the entire ground-state manifold,
yielding the discrete Chebyshev polynomials. In particular, the ground-
state wave function from our ansatz at strong repulsion is a sign-
alternating Pascal’s triangle in the spin chain. Because its overlap with
the exact ground-state wave function extrapolates to a value ~0.9999
forN→∞, we believe that Eq. 18 is essentially indistinguishable from
the result of numerically exact approaches.

In addition to the static properties considered here, our ansatz
provides a framework for investigating impurity dynamics in a har-
monic potential because we have determined the entire spectrum of
the ground-state manifold and associated excited states related via a
scale transformation. The impurity dynamics in 1D gases have re-
cently been investigated theoretically in (40, 41) and experimentally
in (42, 43).

Our results also extend far beyond the single-impurity problem
because the effective HeisenbergHamiltonian (Eq. 12) accurately de-
scribes any number of ↑, ↓ particles in the strongly coupled regime, as
explicitly demonstrated forN↑ =N↓ = 2. For larger N↑ andN↓, where
the number of states grows dramatically, our Hamiltonian can be
tackled with numerical tools developed for lattice systems, such as
the density matrix renormalization group (44) or matrix product
states (45). Extending our approach beyond the two-component Fermi
gas to other quantummixtures would also enable us to address open
problems in the context of quantum magnetism, such as the nature
of correlations and dynamical quantum phase transitions. In partic-
Levinsen et al. Sci. Adv. 2015;1:e1500197 24 July 2015
ular, it would be interesting to investigate whether our ansatz may be
extended to harmonically confined N-component fermions, a scenario
that has relevance to SU(N) magnetism (46) and that has recently been
experimentally realized (47).

Finally, the exceptional accuracy of our simple ansatz and the sug-
gestive form of the impurity spectrum, E − E0 º l(l + 1)/g, lead us to
speculate that our results are the manifestation of a hidden approxi-
mate symmetry. This raises the tantalizing possibility that the 1D Fer-
mi gas in a harmonic potential becomes near-integrable in the
strongly interacting limit.

METHODS

Manipulations of the basis functions
To calculate the overlaps of the basis functions ϕl, it is useful to in-
troduce an alternative formulation of the problem. First, we note
that, for a given ordering of particles, all basis functions ϕl (and con-
sequently any superposition of these) are proportional to y0. We
may then define the complete and orthonormal set of basis states:

〈xj↓i〉 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
y0ðxÞQðfxjgi < x0 < fxjgN−iÞ ð25Þ

where 1 ≤ j ≤ N. {xj}i corresponds to any set of i spin-↑ particles,
and the step function Q is 1 if precisely i of the N majority particles
are to the left of the impurity, and zero otherwise. Clearly, the states
described by Eq. 25 do not overlap. To see that they are properly
normalized, consider

〈↓ij↓i〉 ¼ ðN þ 1Þ∫dxjy0ðxÞj2Qðfxjgi < x0 < fxjgN−1Þ
¼ N þ 1ð Þ N !

ðN þ 1Þ! ¼ 1 ð26Þ

Here, we used the fact that the integral over the (normalized) ferro-
magnetic state y0 does not depend on the ordering of particles. Thus,
restricting the integral to a particular ordering, the result is 1/(N + 1)!.

Now, if i particles are to the left of the impurity, there are
N
i

� �
ways of

choosing these, with i! × (N − i)! ways of ordering those to the left and
right of the impurity. Gathering the terms, the basis states {|↓i〉} are thus
seen to form an orthonormal basis.

Recall now the definition of the basis states ϕl:

ϕl ¼ y0ðxÞ ∑
1≤i1<⋅⋅⋅<il≤N

; si1 ⋅⋅⋅sil ; 1 ≤ l ≤ N ð27Þ

with sj ≡ sign(xj − x0). Assuming there are exactly i majority particles
to the left of the impurity, we may evaluate the sum of sign functions:
∑
1≤i1<⋅⋅⋅<il≤N

si1 ⋅⋅⋅sil ¼ ∑
l

k¼0
ð−1Þk i

k

� �
N − i
l − k

� �
ð28Þ

This simply counts how many combinations exist with k [l − k] ma-
jority particles involved in the sign functions out of the i [N− i]majority
particles located to the left [right] of the impurity, respectively. Thus, we
arrive at the projection of the two sets of basis states:

〈↓ijϕl〉 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

N þ 1
p ∑

l

k¼0
ð−1Þk i

k

� �
N − i
l − k

� �
ð29Þ

The prefactor arises from the same arguments that led to Eq. 25.
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The inner products Fln = 〈ϕl|ϕn〉 then simply follow from Eq. 29,

Fln ¼ ∑
N

i¼0
〈ϕlj↓i〉〈↓ijϕn〉

¼ 1

N þ 1
∑
N

i¼0

�
∑
l

k1¼0
ð−1Þk1 i

k1

� �
N − i
l − k1

� ��

�
�
∑
n

k2¼0
ð−1Þk2 i

k2

� �
N − i
n − k2

� ��

We also note that the matrix F is bisymmetric, that is, Fln = Fnl =
FN − l,N − n.

Numerical evaluation of H′.
The matrix elements of H′ can be evaluated as

H′ln ¼ 〈ϕl jH′jϕn〉 ¼ lim
g→∞

g2∑
N

i¼1
∫dxdðxi0Þϕlϕn

¼ ∑
N

i¼1
∫dx d xi0ð Þ ∂ϕl

∂xi0

����þ
−

∂ϕn

∂ϕi0

����þ
−

ð30Þ

where we have used the fact that gϕl xi0 ¼ð 0Þ ¼ limxi0→0þ

∂ϕl

∂xi0
xi0ð Þ − limxi0→0−

∂ϕl

∂xi0
xi0ð Þ≡ ∂ϕl

∂xi0

���� þ− . This quantity can be non-

zero because of the presence of cusps in the basis functions. Note that
∂ϕ0

∂xi0

���� þ− ¼ 0 for the ferromagnetic state and thereforeH′0n =H′n0 = 0.

This implies that ϕ0 is an eigenstate with C = 0, as expected.
We now show that the (N + 1)–dimensional integrals appearing

in the matrix elements ofH′, Eq. 30, may conveniently be expressed
in terms of a Taylor expansion of a suitable function. We begin by
noting that the bracketed term of the wave function

y0ðxÞ ¼ N N

�
∏

0≤i<j≤N
xij

�
e−∑

N
k¼0x

2
k =2 ð31Þ

only depends on the relative coordinates. It is then convenient to intro-
duce the center-of-mass coordinate xcm≡∑Ni¼0xi=ðN þ 1Þ and the rela-
tive coordinates y0 = (N + 1)(x0 − xcm) and yi = xi0 (1 ≤ i ≤ N). The
constraint ∑Ni¼0xi−ðN þ 1Þxcm ¼ ∑Ni¼0yi ¼ 0 may be enforced through
the use of a d-function, which in turn may be converted into an extra
integral, yielding

∫dxð⋅Þ ¼ ∫ dk
2p

dxcmdy e
ik∑Nj¼0yj ⋅ð Þ

This allows us to decouple the center-of-mass coordinate. The inte-

grand of Eq. 30 contains a factor of e−∑
N
i¼0x

2
i (following from the

form of y0), which may be written as e−∑
N
i¼1y

2
1 þ y20=ðNþ1Þ−ðNþ1Þx2cm .

Because this is the only term in which the center-of-mass coordinate

appears in Eq. 30, xcm may be integrated out to give
ffiffiffiffiffiffiffiffiffiffiffiffi
p

N þ 1

r
.
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Next, consider the part of the integral involving both k and y0:

∫ dk
2p

dy0 ⋅ð Þey20=ðNþ1Þeiky0 ¼ ∫ dk
2p

dy0 ⋅ð Þe−∇2
k=ðNþ1Þeiky0

¼ ∫dkdðkÞe−∇2
k=ðNþ1Þð⋅Þ

where in the last step we have integrated by parts. Collecting all
factors, we get an expression where the integrals over the yi have been
decoupled:

H′ln ¼ ∑
N

i¼1
∫dx dðyiÞ ∂ϕl

∂yi

����þ
−

∂ϕn

∂yi

����þ
−

¼ 4NN 2
N

ffiffiffiffiffiffiffiffiffiffiffiffi
p

N þ 1

r
∫dkdðkÞe−∇

2
k=ðNþ1Þ

� ½∫dN−1y e∑
N−1
j¼1 ðikyj−y2j ÞSðN−1Þ

l−1 SðN−1Þ
n−1

� ∏
1≤i1<i2<N

ðyi1 − yi2Þ2 ∏
1≤m<N

y2m� ð32Þ

where SðNÞ
l ≡∑1≤i1<⋅⋅⋅<il≤Nsi1 ⋅⋅⋅sil∏

N
i¼1yi. We have made use of the fact
that the integral is independent of i so that we can differentiate with respect

to just yN and multiply by N. We also used the relation
∂SðNÞ

l

∂yN

���� þ
−
¼ 2SðN−1Þ

l−1 .

Denoting the quantity in square parentheses by hln(k) and introducing
its Taylor expansion around k ¼ 0; hlnðkÞ ¼ ∑∞m¼0h

ðmÞ
ln km, we see that

the desired matrix element is converted into a quickly convergent series,

H′ln ¼ 4NN 2
N

ffiffiffiffiffiffiffiffiffiffiffiffi
p

N þ 1

r
∑∞

m¼0

−1

N þ 1

� �m
ð2mÞ!
m! hð2mÞln :

For the example ofN=3, the function appearing in square parenthe-
ses for the matrix elementH′11 is

h11ðkÞ ¼ ∫dy1dy2eikðy1þy2Þ−y21−y22y41y
4
2ðy1 − y2Þ2

whereas for the matrix element H′31, it is

h31ðkÞ ¼ ∫dy1dy2eikðy1þy2Þ−y21−y22 jy1y2jy31y32ðy1 − y2Þ2

In both cases, we see how the integrals over the relative coordinates
between the impurity and the majority particles separate. It is also
easy to see that h11(k) = h33(k), as expected.

Analytic solution for N = 3
We start by considering the explicit solution of the Schrödinger equa-
tion perturbatively for 1/|g| ≪ 1. First, we note that the matrix
elements of H′ can be written as

H′ln ¼ 4N∑
i¼0

N−1

I i

�
∑
k1¼0

l−1

ð−1Þk1 i
k1

� �
N − 1 − i
l − 1 − k1

� ��

� N − 1
i

� ��
∑
k2¼0

n−1

ð−1Þk2 i
k2

� �
N − 1 − i
n − 1 − k2

� ��

where we have the integral

I i ¼ ∫
∞

−∞dx0∫
x0

−∞d
ixj∫

∞

x0
dN−1−ixk

∂y0

∂xN0

� �2����
xN0¼0

that is, we integrate over i of the majority particles to the left of
the impurity, and N − i − 1 to the right. Note that the integral
9 of 11
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only couples basis states with the same parity. One can also show
that

〈ϕN−lþ1jH′jϕN−nþ1〉 ¼ 〈ϕl jH′jϕn〉

For N = 3, it is possible to evaluate I i analytically, thus giving

H′
11 ¼ H′

33 ¼
475

32
ffiffiffiffiffi
2p

p

H′
13 ¼ H′

31 ¼
1425

ffiffiffiffiffi
2p

p
− 56 − 2850

ffiffiffi
2

p
tan−1ð2 ffiffiffi

2
p Þ

192p3=2

H′
22 ¼

1425
ffiffiffi
2

p
p − 28 − 1425

ffiffiffi
2

p
tan−1ð2 ffiffiffi

2
p Þ

48p3=2
ð33Þ

Combining this with thematrix of inner productsF then allows us to
solve the eigenvalue equation and determine C and y analytically.
The resulting expressions are rather cumbersome and yield the nu-
merical values shown in the main text.

SO(2,1) symmetry and excited states
We define the scaling operator SðlÞ as

S lð Þy xð Þ ¼ yðx=lÞ
lðNþ1Þ=2 ð34Þ

It can be written as (48, 49)

S lð Þ ¼ e−ilnlD with D ¼ 1

2i
xi∂i þ ∂ixið Þ ð35Þ

The raising and lowering operators can then be defined as (50)

B ¼ L −
Q2

N þ 1
with L ¼ 1

2
H − X

2
− iD

� �
for the N + 1 particle state. Here, X

2 ¼ ∑ix2i is twice the harmonic
potential, and Q ¼ ðP þ iKÞ= ffiffiffi

2
p

with P ¼ ∑jpj the total momen-
tum and K ¼ ∑jxj the center-of-mass coordinate. One can show
that, in the TG limit, ½H;B†� ¼ 2B† from which it follows that if |n〉
is an eigenstate with energy En, then jnþ 1〉 ¼ B†jn〉 is an eigenstate
with energy En+1 = En + 2. The operator B† excites breathing modes,
and the spectrum in the TG limit consists of towers of states separated
by twice the harmonic potential frequency, where Bj0〉 ¼ 0 for the
lowest state in each tower.

To calculate the scaling dimension, we take the derivative of Eq. 23
with respect to l, setting l = 1, from which it follows that the scaling
dimension is DH′ ¼ 3. The calculation of the energy shift, Eq. 22, is
now rather long and cumbersome but straightforward because all nec-
essary commutators are known (50). We obtain

dEn − dEn−1 ¼ 3

4Rn−1
dEn−1 þ Rn−2

Rn−1
ðdEn−1 − dEn−2Þ ð36Þ

where we have defined Rn ¼ ∑nj¼0Ej ¼ ∑nj¼0ðE0 þ 2jÞ ¼ ðnþ 1Þ
ðE0 þ nÞ. Here, Ej is the internal energy of the jth state, that is, the
energyminus the zero point energy of the center-of-mass. The last term
in Eq. 36 is zero for n = 1. Equation 36 gives the shift dEn of the
energy of the state |n〉 away from its value in the TG limit in terms of
the energy shifts of the lower modes.
Levinsen et al. Sci. Adv. 2015;1:e1500197 24 July 2015
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