97 research outputs found
Quality of life and well-being of carers of people with dementia: are there differences between working and nonworking carers? Results from the IDEAL program
The aim of this study was to identify the differences in quality of life (QoL) and well-being between working and nonworking dementia carers and the relative contribution of psychological characteristics, caregiving experience, and social support. Multiple regressions modeled the contribution of working status, caregiver experiences, and psychological and social resources to carer QoL (EQ-5D) and well-being (WHO-5). After controlling for age, gender, carerâdyad relationship, and severity of dementia, working status contributed significant variance to EQ-5D (2%) but not to WHO-5 scores. Independent of working status, higher self-esteem and reduced stress contributed to variance in both models. Self-efficacy, social support, and positive perceptions of caregiving additionally contributed to higher WHO-5 scores. Working status associated with higher EQ-5D QoL; this may reflect the sustained sense of independence associated with supported work opportunities for carers. Outside of working status, the findings support the importance of psychological and social factors as targets to improved mental health for dementia carers
Comparison of weather station and climate reanalysis data for modelling temperature-related mortality
Epidemiological analyses of health risks associated with non-optimal temperature are traditionally based on ground observations from weather stations that offer limited spatial and temporal coverage. Climate reanalysis represents an alternative option that provide complete spatio-temporal exposure coverage, and yet are to be systematically explored for their suitability in assessing temperature-related health risks at a global scale. Here we provide the first comprehensive analysis over multiple regions to assess the suitability of the most recent generation of reanalysis datasets for health impact assessments and evaluate their comparative performance against traditional station-based data. Our findings show that reanalysis temperature from the last ERA5 products generally compare well to station observations, with similar non-optimal temperature-related risk estimates. However, the analysis offers some indication of lower performance in tropical regions, with a likely underestimation of heat-related excess mortality. Reanalysis data represent a valid alternative source of exposure variables in epidemiological analyses of temperature-related risk
Global short-term mortality risk and burden associated with tropical cyclones from 1980 to 2019: a multi-country time-series study
Background The global spatiotemporal pattern of mortality risk and burden attributable to tropical cyclones is unclear. We aimed to evaluate the global short-term mortality risk and burden associated with tropical cyclones from 1980 to 2019.Methods The wind speed associated with cyclones from 1980 to 2019 was estimated globally through a parametric wind field model at a grid resolution of 0 & BULL;5 & DEG;x 0 & BULL;5 & DEG;. A total of 341 locations with daily mortality and temperature data from 14 countries that experienced at least one tropical cyclone day (a day with maximum sustained wind speed associated with cyclones & GE;17 & BULL;5 m/s) during the study period were included. A conditional quasi-Poisson regression with distributed lag non-linear model was applied to assess the tropical cyclone-mortality association. A meta-regression model was fitted to evaluate potential contributing factors and estimate grid cell-specific tropical cyclone effects.Findings Tropical cyclone exposure was associated with an overall 6% (95% CI 4-8) increase in mortality in the first 2 weeks following exposure. Globally, an estimate of 97 430 excess deaths (95% empirical CI [eCI] 71 651-126 438) per decade were observed over the 2 weeks following exposure to tropical cyclones, accounting for 20 & BULL;7 (95% eCI 15 & BULL;2-26 & BULL;9) excess deaths per 100 000 residents (excess death rate) and 3 & BULL;3 (95% eCI 2 & BULL;4-4 & BULL;3) excess deaths per 1000 deaths (excess death ratio) over 1980-2019. The mortality burden exhibited substantial temporal and spatial variation. East Asia and south Asia had the highest number of excess deaths during 1980-2019: 28 744 (95% eCI 16 863-42 188) and 27 267 (21 157-34 058) excess deaths per decade, respectively. In contrast, the regions with the highest excess death ratios and rates were southeast Asia and Latin America and the Caribbean. From 1980-99 to 2000-19, marked increases in tropical cyclone-related excess death numbers were observed globally, especially for Latin America and the Caribbean and south Asia. Grid cell-level and country-level results revealed further heterogeneous spatiotemporal patterns such as the high and increasing tropical cyclone-related mortality burden in Caribbean countries or regions. Interpretation Globally, short-term exposure to tropical cyclones was associated with a significant mortality burden, with highly heterogeneous spatiotemporal patterns. In-depth exploration of tropical cyclone epidemiology for those countries and regions estimated to have the highest and increasing tropical cyclone-related mortality burdens is urgently needed to help inform the development of targeted actions against the increasing adverse health impacts of tropical cyclones under a changing climate.Australian Research Council and Australian National Health and Medical Research Council
Transcriptional regulation of Saccharomyces cerevisiaeCYS3 encoding cystathionine Îł-lyase
In studying the regulation of GSH11, the structural gene of the high-affinity glutathione transporter (GSH-P1) in Saccharomyces cerevisiae, a cis-acting cysteine responsive element, CCGCCACAC (CCG motif), was detected. Like GSH-P1, the cystathionine Îł-lyase encoded by CYS3 is induced by sulfur starvation and repressed by addition of cysteine to the growth medium. We detected a CCG motif (â311 to â303) and a CGC motif (CGCCACAC; â193 to â186), which is one base shorter than the CCG motif, in the 5âČ-upstream region of CYS3. One copy of the centromere determining element 1, CDE1 (TCACGTGA; â217 to â210), being responsible for regulation of the sulfate assimilation pathway genes, was also detected. We tested the roles of these three elements in the regulation of CYS3. Using a lacZ-reporter assay system, we found that the CCG/CGC motif is required for activation of CYS3, as well as for its repression by cysteine. In contrast, the CDE1 motif was responsible for only activation of CYS3. We also found that two transcription factors, Met4 and VDE, are responsible for activation of CYS3 through the CCG/CGC and CDE1 motifs. These observations suggest a dual regulation of CYS3 by factors that interact with the CDE1 motif and the CCG/CGC motifs
Interactive effects of ambient fine particulate matter and ozone on daily mortality in 372 cities: two stage time series analysis
Objective To investigate potential interactive effects of fine particulate matter (PM2.5) and ozone (O3) on daily mortality at global level.
Design Two stage time series analysis.
Setting 372 cities across 19 countries and regions.
Population Daily counts of deaths from all causes, cardiovascular disease, and respiratory disease.
Main outcome measure Daily mortality data during 1994-2020. Stratified analyses by co-pollutant exposures and synergy index (>1 denotes the combined effect of pollutants is greater than individual effects) were applied to explore the interaction between PM2.5 and O3 in association with mortality.
Results During the study period across the 372 cities, 19.3 million deaths were attributable to all causes, 5.3 million to cardiovascular disease, and 1.9 million to respiratory disease. The risk of total mortality for a 10 ÎŒg/m3 increment in PM2.5 (lag 0-1 days) ranged from 0.47% (95% confidence interval 0.26% to 0.67%) to 1.25% (1.02% to 1.48%) from the lowest to highest fourths of O3 concentration; and for a 10 ÎŒg/m3 increase in O3 ranged from 0.04% (â0.09% to 0.16%) to 0.29% (0.18% to 0.39%) from the lowest to highest fourths of PM2.5 concentration, with significant differences between strata (P for interaction <0.001). A significant synergistic interaction was also identified between PM2.5 and O3 for total mortality, with a synergy index of 1.93 (95% confidence interval 1.47 to 3.34). Subgroup analyses showed that interactions between PM2.5 and O3 on all three mortality endpoints were more prominent in high latitude regions and during cold seasons.
Conclusion The findings of this study suggest a synergistic effect of PM2.5 and O3 on total, cardiovascular, and respiratory mortality, indicating the benefit of coordinated control strategies for both pollutants
Heat-related cardiorespiratory mortality: effect modification by air pollution across 482 cities from 24 countries
Background Evidence on the potential interactive effects of heat and ambient air pollution on cause-specific mortality is inconclusive and limited to selected locations. Objectives We investigated the effects of heat on cardiovascular and respiratory mortality and its modification by air pollution during summer months (six consecutive hottest months) in 482 locations across 24 countries. Methods Location-specific daily death counts and exposure data (e.g., particulate matter with diameters †2.5 ”m [PM2.5]) were obtained from 2000 to 2018. We used location-specific confounder-adjusted Quasi-Poisson regression with a tensor product between air temperature and the air pollutant. We extracted heat effects at low, medium, and high levels of pollutants, defined as the 5th, 50th, and 95th percentile of the location-specific pollutant concentrations. Country-specific and overall estimates were derived using a random-effects multilevel meta-analytical model. Results Heat was associated with increased cardiorespiratory mortality. Moreover, the heat effects were modified by elevated levels of all air pollutants in most locations, with stronger effects for respiratory than cardiovascular mortality. For example, the percent increase in respiratory mortality per increase in the 2-day average summer temperature from the 75th to the 99th percentile was 7.7% (95% Confidence Interval [CI] 7.6-7.7), 11.3% (95%CI 11.2-11.3), and 14.3% (95% CI 14.1-14.5) at low, medium, and high levels of PM2.5, respectively. Similarly, cardiovascular mortality increased by 1.6 (95%CI 1.5-1.6), 5.1 (95%CI 5.1-5.2), and 8.7 (95%CI 8.7-8.8) at low, medium, and high levels of O3, respectively. Discussion We observed considerable modification of the heat effects on cardiovascular and respiratory mortality by elevated levels of air pollutants. Therefore, mitigation measures following the new WHO Air Quality Guidelines are crucial to enhance better health and promote sustainable development
Influence of temperature and surfactants on the solubilization of hexachlorobutadiene and hexachloroethane
The solubilization of hexachlorobutadiene (HCBD) and hexachloroethane (HCA) in water as a function of temperature and in the presence of surfactants was investigated in order to predict their fate in groundwater and to increase their recovery. HCBD and HCA solubility data were experimentally determined at five temperatures in the range from (285.15 to 318.15) K. Thermodynamic parameters for dissolution (ÎsolG°, ÎsolH°, and ÎsolS°) have been calculated in order to propose a physical explanation of the minimum solubility observed between 293.15 and 298.15 K for both compounds. The solubilization process appeared to be influenced by the network of water molecules rather than by physical and chemical properties of HCBD or HCA, due to an opposite effect of temperature onto Brownian motion, which increases with temperature, and hydrogen-bond network, which collapses with temperature. Concerning the influence of surfactants, determination of the micelleâwater partition coefficients (Kmw) and the molar solubilization ratio (MSR) has shown that the solubilization per micelle was more important for nonionic surfactants Triton X-100 and Tween 80 than for anionic SDBS. Also, the increase of solubility was 1 order of magnitude higher for liquid HCBD than for crystalline HCA irrespective of surfactant
Comparison of weather station and climate reanalysis data for modelling temperature-related mortality
Epidemiological analyses of health risks associated with non-optimal temperature are traditionally based on ground observations from weather stations that offer limited spatial and temporal coverage. Climate reanalysis represents an alternative option that provide complete spatio-temporal exposure coverage, and yet are to be systematically explored for their suitability in assessing temperature-related health risks at a global scale. Here we provide the first comprehensive analysis over multiple regions to assess the suitability of the most recent generation of reanalysis datasets for health impact assessments and evaluate their comparative performance against traditional station-based data. Our findings show that reanalysis temperature from the last ERA5 products generally compare well to station observations, with similar non-optimal temperature-related risk estimates. However, the analysis offers some indication of lower performance in tropical regions, with a likely underestimation of heat-related excess mortality. Reanalysis data represent a valid alternative source of exposure variables in epidemiological analyses of temperature-related risk. © 2022, The Author(s).The original version of this Article contained an error in Affiliation 25, which was incorrectly given as âFaculty of Medicine ArqFuturo INSPER, University of SĂŁo Paulo, SĂŁo Paulo, Brazilâ. The correct affiliation is listed below. Faculty of Medicine, University of SĂŁo Paulo, SĂŁo Paulo, Brazil The original Article has been corrected. © The Author(s) 2022.The study was primarily supported by Grants from the European Commissionâs Joint Research Centre Seville (Research Contract ID: JRC/SVQ/2020/MVP/1654), Medical Research Council-UK (Grant ID: MR/R013349/1), Natural Environment Research Council UK (Grant ID: NE/R009384/1), European Unionâs Horizon 2020 Project Exhaustion (Grant ID: 820655). The following individual Grants also supported this work: J.K and A.U were supported by the Czech Science Foundation, project 20-28560S. A.T was supported by MCIN/AEI/10.13039/501100011033, Grant CEX2018-000794-S. V.H was supported by the European Unionâs Horizon 2020 research and innovation programme under the Marie SkĆodowska-Curie Grant agreement No 101032087. This work was generated using Copernicus Climate Change Service (C3S) information [1985â2019]
Temporal variations in the short-term effects of ambient air pollution on cardiovascular and respiratory mortality: a pooled analysis of 380 urban areas over a 22-year period
Background: Ambient air pollution, including particulate matter (such as PM10 and PM2·5) and nitrogen dioxide (NO2), has been linked to increases in mortality. Whether populationsâ vulnerability to these pollutants has changed over time is unclear, and studies on this topic do not include multicountry analysis. We evaluated whether changes in exposure to air pollutants were associated with changes in mortality effect estimates over time. Methods: We extracted cause-specific mortality and air pollution data collected between 1995 and 2016 from the Multi-Country Multi-City (MCC) Collaborative Research Network database. We applied a two-stage approach to analyse the short-term effects of NO2, PM10, and PM2·5 on cause-specific mortality using city-specific time series regression analyses and multilevel random-effects meta-analysis. We assessed changes over time using a longitudinal meta-regression with time as a linear fixed term and explored potential sources of heterogeneity and two-pollutant models. Findings: Over 21·6 million cardiovascular and 7·7 million respiratory deaths in 380 cities across 24 countries over the study period were included in the analysis. All three air pollutants showed decreasing concentrations over time. The pooled results suggested no significant temporal change in the effect estimates per unit exposure of PM10, PM2·5, or NO2 and mortality. However, the risk of cardiovascular mortality increased from 0·37% (95% CI â0·05 to 0·80) in 1998 to 0·85% (0·55 to 1·16) in 2012 with a 10 ÎŒg/m3 increase in PM2·5. Two-pollutant models generally showed similar results to single-pollutant models for PM fractions and indicated temporal differences for NO2. Interpretation: Although air pollution levels decreased during the study period, the effect sizes per unit increase in air pollution concentration have not changed. This observation might be due to the composition, toxicity, and sources of air pollution, as well as other factors, such as socioeconomic determinants or changes in population distribution and susceptibility. Funding: None. © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseAG was supported by the European Union's Horizon 2020 Project Exhaustion (grant number 820655). FS was supported by the Italian Ministry of University and Research, Department of Excellence project 2023â2027 ReDS âRethinking Data ScienceââDepartment of Statistics, Computer Science and Applications, University of Florence. AMV-C acknowledges funding from the Swiss National Science Foundation (grant number TMSGI3_211626). JJKJ was supported by the Academy of Finland (grant number 310372; Global Health Risks Related to Atmospheric Composition and Weather Consortium)
Regional variation in the role of humidity on city-level heat-related mortality
The rising humid heat is regarded as a severe threat to human survivability, but the proper integration of humid heat into heat-health alerts is still being explored. Using state-of-the-art epidemiological and climatological datasets, we examined the association between multiple heat stress indicators (HSIs) and daily human mortality in 739 cities worldwide. Notable differences were observed in the long-term trends and timing of heat events detected by HSIs. Air temperature (Tair) predicts heat-related mortality well in cities with a robust negative Tair-relative humidity correlation (CT-RH). However, in cities with near-zero or weak positive CT-RH, HSIs considering humidity provide enhanced predictive power compared to Tair. Furthermore, the magnitude and timing of heat-related mortality measured by HSIs could differ largely from those associated with Tair in many cities. Our findings provide important insights into specific regions where humans are vulnerable to humid heat and can facilitate the further enhancement of heat-health alert systems. © The Author(s) 2024.Q.G., M.H., and T.O. were supported by the Environment Research and Technology Development Fund (JPMEERF23S21120) of the Environmental Restoration and Conservation Agency provided by the Ministry of the Environment of Japan. Q.G. was supported by the Musha Shugyo international travel grants from the School of Engineering, The University of Tokyo. T.O. was supported by the Japan Society for the Promotion of Science (KAKENHI: 21H05002), and the Environment Research and Technology Development Fund of the Environmental Restoration and Conservation Agency of Japan (JPMEERF23S21100). M.N.M. was supported by the European Commission (H2020-MSCA-IF-2020) under REA grant agreement no. 101022870. A.G. was supported by the Medical Research Council-UK (Grant ID: MR/V034162/1) and European Unionâs Horizon 2020 Project Exhaustion (Grant ID: 820655). J.K. was supported by the Czech Science Foundation, project 23-06749S. A.M.V.-C. supported by the Swiss National Science Foundation (TMSGI3_211626). V.H. was supported by the European Unionâs Horizon 2020 research and innovation program (H2020-MSCA-IF-2020, Grant No.: 101032087). Y.S. was supported by Brain Pool Plus program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (NRF-2021H1D3A2A03097768), and the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (NRF-2023R1A2C1004754)
- âŠ