118 research outputs found

    Ballistic transport and surface scattering in (In,Ga)As-InP heterostructure narrow channels

    Get PDF
    Narrow conduction channels are fabricated from an In0.75Ga0.25As-InP heterostructure using electron-beam lithography and dry etching. The etched surface is realized to be smooth by employing a reactive ion etching. The etching-induced surface conduction is eliminated by removing the damaged surface layer using a diluted HCl solution. The negligible surface depletion for the In-rich quantum well enables to create conducting channels in arbitrary geometries such as in a circular shape. We evidence the presence of a ballistic contribution in the electron transport by demonstrating a rectification of rf excitations that is achieved by the magnetic-field-tuned transmission asymmetry in the circularly-shaped channels. The absence of the surface depletion is shown to cause, on the other hand, a surface scattering for the electrons confined in the channels. An increase of the resistance, including its anomalous enhancement at low temperatures, is induced by the gas molecules attached to the sidewalls of the channels. We also report a large persistent photoconduction, which occurs as a parallel conduction in the undoped InP barrier layer.Peer Reviewe

    High-spectral-resolution pulsed photoluminescence study of molecular-beam-epitaxy-grown GaAs/AlxGa1−xAs multi-quantum-well structures using a very-low-power tunable pulsed dye laser

    Get PDF
    Ultralow-power, high-resolution, pulsed-laser photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies were carried out in molecular-beam-epitaxial GaAs/AlxGa1−xAs multi-quantum-well structures at 5 K. Fine structures were observed for the first time in the PLE spectra, both in the heavy-hole and light-hole excitonic regions. Most of the fine structures are considered to arise from monolayer fluctuations in the thicknesses of the GaAs wells. Dramatic changes in the line shapes and the peak positions of the PL and PLE spectra were observed by applying selective PL detection and excitation spectroscopic techniques

    GaAs/GaP quantum dots: Ensemble of direct and indirect heterostructures with room temperature optical emission

    Get PDF
    Producción CientíficaWe describe the optical emission and the carrier dynamics of an ensemble of self-assembled GaAs quantum dots embedded in GaP(001). The QD formation is driven by the 3.6% lattice mismatch between GaAs and GaP in the Stranski-Krastanow mode after deposition of more than 1.2 monolayers of GaAs. The quantum dots have an areal density between 6 and 7.6 × 1010 per cm−2 and multimodal size distribution. The luminescence spectra show two peaks in the range of 1.7 and 2.1 eV. The samples with larger quantum dots have red emission and show less thermal quenching compared with the samples with smaller QDs. The large QDs luminescence up to room temperature. We attribute the high energy emission to indirect carrier recombination in the thin quantum wells or small strained quantum dots, whereas the low energy red emission is due to the direct electron-hole recombination in the relaxed quantum dots.Comisión Europea (project FP7-ICT-2013-613024-GRASP

    Transient four-wave mixing in T-shaped GaAs quantum wires

    Get PDF
    The binding energy of excitons and biexcitons and the exciton dephasing in T-shaped GaAs quantum wires is investigated by transient four-wave mixing. The T-shaped structure is fabricated by cleaved-edge overgrowth, and its geometry is engineered to optimize the one-dimensional confinement. In this wire of 6.6×24 nm2 size, we find a one-dimensional confinement of more than 20 meV, an inhomogeneous broadening of 3.4 meV, an exciton binding energy of 12 meV, and a biexciton binding energy of 2.0 meV. A dispersion of the homogeneous linewidth within the inhomogeneous broadening due to phonon-assisted relaxation is observed. The exciton acoustic-phonon-scattering coefficient of 6.1±0.5 ΌeV/K is larger than in comparable quantum-well structures

    Coastal shoreline change assessments at global scales

    Get PDF
    During the present era of rapid climate change and sea-level rise, coastal change science is needed at global, regional, and local scales. Essential elements of this science, regardless of scale, include that the methods are defendable and that the results are independently verifiable. The recent contribution by Almar et al.1 does not achieve either of these measures as shown by: (i) the use of an error-prone proxy for coastal shoreline and (ii) analyses that are circular and explain little of the data variance

    Adverse drug events caused by three high-risk drug–drug interactions in patients admitted to intensive care units:A multicentre retrospective observational study

    Get PDF
    Aims: Knowledge about adverse drug events caused by drug–drug interactions (DDI-ADEs) is limited. We aimed to provide detailed insights about DDI-ADEs related to three frequent, high-risk potential DDIs (pDDIs) in the critical care setting: pDDIs with international normalized ratio increase (INR+) potential, pDDIs with acute kidney injury (AKI) potential, and pDDIs with QTc prolongation potential. Methods: We extracted routinely collected retrospective data from electronic health records of intensive care units (ICUs) patients (≄18 years), admitted to ten hospitals in the Netherlands between January 2010 and September 2019. We used computerized triggers (e-triggers) to preselect patients with potential DDI-ADEs. Between September 2020 and October 2021, clinical experts conducted a retrospective manual patient chart review on a subset of preselected patients, and assessed causality, severity, preventability, and contribution to ICU length of stay of DDI-ADEs using internationally prevailing standards. Results: In total 85 422 patients with ≄1 pDDI were included. Of these patients, 32 820 (38.4%) have been exposed to one of the three pDDIs. In the exposed group, 1141 (3.5%) patients were preselected using e-triggers. Of 237 patients (21%) assessed, 155 (65.4%) experienced an actual DDI-ADE; 52.9% had severity level of serious or higher, 75.5% were preventable, and 19.3% contributed to a longer ICU length of stay. The positive predictive value was the highest for DDI-INR+ e-trigger (0.76), followed by DDI-AKI e-trigger (0.57). Conclusion: The highly preventable nature and severity of DDI-ADEs, calls for action to optimize ICU patient safety. Use of e-triggers proved to be a promising preselection strategy.</p
    • 

    corecore