110 research outputs found

    Mean-field phase diagram for Bose-Hubbard Hamiltonians with random hopping

    Full text link
    The zero-temperature phase diagram for ultracold Bosons in a random 1D potential is obtained through a site-decoupling mean-field scheme performed over a Bose-Hubbard (BH) Hamiltonian whose hopping term is considered as a random variable. As for the model with random on-site potential, the presence of disorder leads to the appearance of a Bose-glass phase. The different phases -i.e. Mott insulator, superfluid, Bose-glass- are characterized in terms of condensate fraction and superfluid fraction. Furthermore, the boundary of the Mott lobes are related to an off-diagonal Anderson model featuring the same disorder distribution as the original BH Hamiltonian.Comment: 7 pages, 6 figures. Submitted to Laser Physic

    Gutzwiller approach to the Bose-Hubbard model with random local impurities

    Full text link
    Recently it has been suggested that fermions whose hopping amplitude is quenched to extremely low values provide a convenient source of local disorder for lattice bosonic systems realized in current experiment on ultracold atoms. Here we investigate the phase diagram of such systems, which provide the experimental realization of a Bose-Hubbard model whose local potentials are randomly extracted from a binary distribution. Adopting a site-dependent Gutzwiller description of the state of the system, we address one- and two-dimensional lattices and obtain results agreeing with previous findings, as far as the compressibility of the system is concerned. We discuss the expected peaks in the experimental excitation spectrum of the system, related to the incompressible phases, and the superfluid character of the {\it partially compressible phases} characterizing the phase diagram of systems with binary disorder. In our investigation we make use of several analytical results whose derivation is described in the appendices, and whose validity is not limited to the system under concern.Comment: 12 pages, 5 figures. Some adjustments made to the manuscript and to figures. A few relevant observations added throughout the manuscript. Bibliography made more compact (collapsed some items

    Expansion dynamics in the one-dimensional Fermi-Hubbard model

    Full text link
    Expansion dynamics of interacting fermions in a lattice are simulated within the one-dimensional (1D) Hubbard model, using the essentially exact time-evolving block decimation (TEBD) method. In particular, the expansion of an initial band-insulator state is considered. We analyze the simulation results based on the dynamics of a two-site two-particle system, the so-called Hubbard dimer. Our findings describe essential features of a recent experiment on the expansion of a Fermi gas in a two-dimensional lattice. We show that the Hubbard-dimer dynamics, combined with a two-fluid model for the paired and non-paired components of the gas, gives an efficient description of the full dynamics. This should be useful for describing dynamical phenomena of strongly interacting Fermions in a lattice in general.Comment: Fig. 9 changed, text + supplementary material revise

    Spin-asymmetric Josephson effect

    Full text link
    The Josephson effect is a manifestation of the macroscopic phase coherence of superconductors and superfluids. We propose that with ultracold Fermi gases one can realise a spin-asymmetric Josephson effect in which the two spin components of a Cooper pair are driven asymmetrically - corresponding to driving a Josephson junction of two superconductors with different voltages V_\uparrow and V_\downarrow for spin up and down electrons, respectively. We predict that the spin up and down components oscillate at the same frequency but with different amplitudes. Our results reveal that the standard description of the Josephson effect in terms of bosonic pair tunnelling is insufficient. We provide an intuitive interpretation of the Josephson effect as interference in Rabi oscillations of pairs and single particles, the latter causing the asymmetry.Comment: Article: 4 pages, 3 figures. Supplementary material: 12 pages, 7 figure

    Glassy features of a Bose Glass

    Full text link
    We study a two-dimensional Bose-Hubbard model at a zero temperature with random local potentials in the presence of either uniform or binary disorder. Many low-energy metastable configurations are found with virtually the same energy as the ground state. These are characterized by the same blotchy pattern of the, in principle, complex nonzero local order parameter as the ground state. Yet, unlike the ground state, each island exhibits an overall random independent phase. The different phases in different coherent islands could provide a further explanation for the lack of coherence observed in experiments on Bose glasses.Comment: 14 pages, 4 figures

    The fidelity approach to the Hubbard model

    Full text link
    We use the fidelity approach to quantum critical points to study the zero temperature phase diagram of the one-dimensional Hubbard model. Using a variety of analytical and numerical techniques, we analyze the fidelity metric in various regions of the phase diagram, with particular care to the critical points. Specifically we show that close to the Mott transition, taking place at on-site repulsion U=0 and electron density n=1, the fidelity metric satisfies an hyper-scaling form which we calculate. This implies that in general, as one approaches the critical point U=0, n=1, the fidelity metric tends to a limit which depends on the path of approach. At half filling, the fidelity metric is expected to diverge as U^{-4} when U is sent to zero.Comment: 8 pages, 4 figures, added results on the hyper-scaling form of the fidelity metri

    Collision of one dimensional (1D) spin polarized Fermi gases in an optical lattice

    Get PDF
    In this work we analyze the dynamical behavior of the collision between two clouds of fermionic atoms with opposite spin polarization. By means of the time-evolving block decimation (TEBD) numerical method, we simulate the collision of two one-dimensional clouds in a lattice. There is a symmetry in the collision behaviour between the attractive and repulsive interactions. We analyze the pair formation dynamics in the collision region, providing a quantitative analysis of the pair formation mechanism in terms of a simple two-site model

    Generalized Hartree-Fock Theory for Interacting Fermions in Lattices: Numerical Methods

    Full text link
    We present numerical methods to solve the Generalized Hartree-Fock theory for fermionic systems in lattices, both in thermal equilibrium and out of equilibrium. Specifically, we show how to determine the covariance matrix corresponding to the Fermionic Gaussian state that optimally approximates the quantum state of the fermions. The methods apply to relatively large systems, since their complexity only scales quadratically with the number of lattice sites. Moreover, they are specially suited to describe inhomogenous systems, as those typically found in recent experiments with atoms in optical lattices, at least in the weak interaction regime. As a benchmark, we have applied them to the two-dimensional Hubbard model on a 10x10 lattice with and without an external confinement.Comment: 16 pages, 22 figure

    Microwave amplification with nanomechanical resonators

    Full text link
    Sensitive measurement of electrical signals is at the heart of modern science and technology. According to quantum mechanics, any detector or amplifier is required to add a certain amount of noise to the signal, equaling at best the energy of quantum fluctuations. The quantum limit of added noise has nearly been reached with superconducting devices which take advantage of nonlinearities in Josephson junctions. Here, we introduce a new paradigm of amplification of microwave signals with the help of a mechanical oscillator. By relying on the radiation pressure force on a nanomechanical resonator, we provide an experimental demonstration and an analytical description of how the injection of microwaves induces coherent stimulated emission and signal amplification. This scheme, based on two linear oscillators, has the advantage of being conceptually and practically simpler than the Josephson junction devices, and, at the same time, has a high potential to reach quantum limited operation. With a measured signal amplification of 25 decibels and the addition of 20 quanta of noise, we anticipate near quantum-limited mechanical microwave amplification is feasible in various applications involving integrated electrical circuits.Comment: Main text + supplementary information. 14 pages, 3 figures (main text), 18 pages, 6 figures (supplementary information
    • …
    corecore