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physics. With them one can study the 
physics behind interesting phenomena such 
as superfluidity and superconductivity. In 
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(FFLO) superconducting state. 
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1. Ultracold Atomic Gases: a
Playground for Condensed Matter

1.1 A short background

The field of condensed matter physics studies states of matter in which

quantummechanics and interparticle interactions play an important role,

such as the familiar solids, and the more foreign superconductors, fer-

romagnets, and antiferromagnets. Understanding these states lays the

foundation of some applications we use in everyday life: for example fridge

magnets, computer hard drives, and the transmission of electric energy.

The name of the research field was coined in 1967 by Philip W. Ander-

son and Volker Heine when they renamed their research group in Uni-

versity of Cambridge from ’Solid-state Theory’ to ’Theory of Condensed

Matter’ [1]. The renaming occurred because it had become apparent that

the theories used to describe solids (whose description requires quantum

mechanics) were applicable also to quantum fluids. Indeed, the theories

that describe e.g. superconductivity in metals (solid) can be used to model

superfluidity in e.g. liquid helium and atomic gases (fluid), and vice versa.

In this thesis we will focus on the atomic gases which, regarding fun-

damental research of physics, have several advantages over solids. They

are much easier to control experimentally than metals or other solid state

systems. Direct measurements of atomic gases are easy to perform. The

density profile, momentum distribution, and excitation spectra are read-

ily accessible. Atomic gases can be made very pure (no defects) and dilute.

The gas can be confined in an optical lattice formed by lasers, thus effec-

tively simulating the ionic lattice in metals. However, unlike in metals,

the parameters of the lattice can be easily changed. One can adjust the

height and geometrical shape of the lattice simply by tuning the laser

set-up. Moreover, with a magnetic field one can arbitrarily change the

strength of the hyperfine spin interaction between two atoms using a phe-
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nomenon called the Feshbach resonance. Finally, and perhaps most im-

portantly, the gas can be cooled to ultracold temperatures (to ca. 100 nK)

so that it exhibits quantum mechanical phase coherence which makes the

gas superfluid.

Because of the controllability and accurate measurements, cold atomic

gases provide a simplified, idealised playground for studying quantum

condensed matter physics. We can experiment with them, test and eval-

uate emerging and established theories, search for new phenomena, and

try to explore the physics behind solid-state phenomena that are not well

understood, e.g. high temperature superconductivity.

Speaking of the motivation for the research, the pursuit for the room

temperature superconductor is one of the holy grails of modern physics

(comparable to fusion power, quantum computer or cure for the cancer). A

room temperature superconductor would enable transmission of electric

energy without dissipation due to resistance, saving large amounts of en-

ergy and being a giant leap towards the use of more sustainable sources

(e.g. solar power from deserts). Understanding the physics behind super-

fluids is one of the main goals for the research presented in this thesis.

Another motivation is that low-dimensional solids, especially graphene

and different nanotubes, have become more attractive for industrial use

in solar cells or transistors. By studying ultracold atomic gases we can

learn what causes the properties observed in these more complicated sys-

tems.

1.2 Experimental highlights

Before discussing the theory required for understanding the results pre-

sented in this thesis, let us overview the most important experimental

findings of the research field of ultracold atomic gases. The capital ex-

perimental highlight of our field has been the realization of the Bose-

Einstein condensate in an ultracold Bose gas [2, 3]. The Bose-Einstein

condensate, as predicted by Satyendra Nath Bose and Albert Einstein

in 1924–25 [4, 5] is a state of matter in which large fraction of particles

are in the lowest energy level of the system. To appreciate this, let us

briefly discuss the nature of the particles which constitute our universe.

The particles can be divided to different classes by many criteria, but the

criterion that interests us here is the statistics they follow. All particles
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follow either Fermi-Dirac or Bose-Einstein statistics, and are thus named

fermions and bosons, respectively. For an equilibrium state with energy

E the unnormalised probability for its occupancy is:

1

e
−E
kBT ± 1

, (1.1)

where the + sign is for fermions and - sign for bosons, kB is the Boltzmann

constant, and T is the temperature. An example distribution is shown

in Figure 1.1. Fermions have half-integer spin and bosons have integer

spin. Bosons can be elementary, like photons, or composite. Composite

bosons are actually built of fermions and their bosonic nature becomes

apparent when the energy scale of the phenomenon under observation is

much lower than the energy involved in the internal fermionic binding.

E3

E4

E1

E2

E3

E4

E5
E5

E1

E2

Figure 1.1. Left: The distribution of five identical fermions over five energy levels at zero
temperature. Right: The corresponding distribution for five identical bosons.
Ei+1 > Ei.

Figure 1.2. Successive occurrence of Bose-Einstein condensation in rubidium. From left
to right is shown the atomic distribution in the cloud just prior to condensa-
tion, at the start of condensation and after full condensation. Reprinted from
The Nobel Foundation 9th September 2001 press release [6].
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From Figure 1.1 one sees what happens in Bose-Einstein condensation:

a large fraction of particles populate the lowest energy level. This makes

it possible for particles in this level to become quantum mechanically co-

herent, and exhibit phenomena that arise from the coherence, e.g. super-

fluidity. After 70 years from the prediction of Bose and Einstein, Bose-

Einstein condensation was detected in an ultracold Bose gas [2, 3] (see

Figure 1.2). Eric Cornell, Carl Wieman, and Wolfgang Ketterle received

the 2001 Nobel prize in physics for the observation.

In contrast to bosons, fermions cannot Bose-Einstein condense due to

the Pauli exclusion principle. However, two fermions of opposite spins can

pair and the pairs, which are composite bosons, can form the condensate.

In fact if the fermionic pairing occurs between particles of opposite mo-

mentum (k and −k) then we speak of Cooper pairs, and we have arrived

at the building blocks of one of the most famous condensed matter the-

ories: the Bardeen-Cooper-Schrieffer theory of superconductivity (a.k.a.

BCS) [7], which successfully describes the microscopic origin of type-I su-

perconductors. We will return to the BCS theory later, but let us now note

that Fermi gas condensates are especially interesting because of their in-

trinsic connection to solid state superconductors. After the experimen-

tal realization of BEC in ultracold gases the next logical step was indeed

to see condensation in fermionic systems. In 2003 the groups of Rudolf

Grimm [8], Deborah Jin [9] and Wolfgang Ketterle [10] succeeded in pro-

ducing gases in which fermions formed molecular bosons, and the bosons

Bose-Einstein condensed. Later in the same year, the group of Deborah

Jin [11] created a true Fermi condensate, i.e. a fermionic condensate with-

out molecular bosons1. Since then the study of ultracold Fermi gases has

been blooming [12, 13, 14]. So, we are in a relatively young field of physics.

After the Fermi condensate was realised, the focus of the research field

was on verifying that the condensate is superfluid. All the experimental

observations suggested this, e.g. the pairing gap in the radio frequency

spectrum as observed by the group of Rudolf Grimm [15] and theoretically

described by the group of Päivi Törmä [16]. The indisputable proof was

obtained when vortices were observed in an ultracold Fermi gas in MIT

[17]. Truly, superfluids are expected to form quantised vortices under

rotation to conserve angular momentum and the lattice of such vortices is

what the MIT group saw in a rather spectacular fashion in their ’smoking

gun’ experiment, see Figure 1.3.

1Meaning that there is pairing in the momentum space, c.f. the BCS theory.
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Figure 1.3. The rotating superfluid gas of fermions is pierced with the vortices, which are
like mini-tornadoes. Reprinted with permission from M.W. Zwierlein et al.,
Vortices and superfluidity in a strongly interacting Fermi gas, Nature 435,
1047-1051 (2005).

After these ground-breaking experiments we come swiftly to the cur-

rent state of affairs. The most notable progress in the last years has been

the realization of two-dimensional lattices with the possibility of spatially

resolving the population of each lattice site. Pioneered by the groups of

Markus Greiner [18], Cheng Chin [19], and Immanuel Bloch and Stefan

Kuhr [20], the single-site imaging method has been used for instance to

detect short antiferromagnetic spin chains in an ultracold Bose gas [21].

The antiferromagnetic state is worthy of study because in high tempera-

ture solid-state superconductors the parent state is antiferromagnetic and

it is thought that understanding better the antiferromagnet-superfluid

transition provides us valuable information. Indeed, one of the current

major goals in the research of ultracold gases is to experimentally realise

the antiferromagnetic and ferromagnetic states, especially in a Fermi gas

in order to make the system more analogous to solid state equivalents.

Other hot topics in our field at the time of writing are the experimental

realization of exotic superfluids, in particular the Fulde-Ferrell-Larkin-

Ovchinnikov state (which we will discuss later), universal properties of

strongly interacting systems, long-range interactions in dipolar molecules,

and dynamics in superfluid systems.

1.3 Modelling systems with a lattice

We are now ready to look more deeply at the physics governing cold atomic

gases. In this chapter we will go through well-established models and
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theories, finishing off with a more thorough discussion of one-dimensional

imbalanced superfluids which do not have a fully established theoretical

picture. In the next chapter more advanced methods used to obtain the

results of Publications I-V are presented. So, let us begin by considering

how physics in a lattice can be modelled.

Just like ions form a lattice for electrons in a solid, an optical lattice for

atoms in a Fermi gas can be formed by using lasers. When the tempera-

ture T and interactions U compared to the band width J are sufficiently

low (kBT � band gap and U2

J � band gap), and long-range interactions

between particles can be neglected, a good model for describing the system

is the single band Fermi-Hubbard Hamiltonian.

1.3.1 Fermi-Hubbard Hamiltonian

The Fermi-Hubbard Hamiltonian with spin-dependent harmonic trapping

potentials included is

HFH = −U∑i n̂i↑n̂i↓ + V↑
∑

i(C↑ − i)2n̂i↑

+V↓
∑

i(C↓ − i)2n̂i↓ − J
∑

i σ=↑,↓ c
†
iσci+1σ +H.c.,

(1.2)

where U is the on-site interaction strength between opposite spins2, V↑/↓
is the harmonic trap strength for the spin up/down particle, C↑/↓ is the

centre of the harmonic trap for spin up/down particle, J is the hopping

matrix element, ĉ†i↑ is a fermionic operator which creates a spin up particle

at lattice site i, ĉi↓ operator annihilates a down particle at lattice site i,

n̂i↑ = ĉ†i↑ĉi↑ is the density of up particles, and H.c. denotes the Hermitian

conjugate of the last term.

The Fermi-Hubbard model is based on the tight-binding model used in

describing electron hopping in an ionic lattice, but it is extended to include

the on-site interaction U . The underlying assumption is that the localised

orbitals that electrons (or atoms in the case of ultracold gases) occupy in

each lattice site do not change as a result of the interaction, but instead

the population of these orbitals changes due to the competition between

the hopping term J and the interaction term U .

We have included the harmonic trap to the model, because it is of par-

ticular interest in ultracold atomic gases. Experimentally the harmonic

potential is the easiest to realise, provides the means for trapping the gas

into a constrained area, and enables also the evaporative cooling scheme

2The sign of the interaction has been chosen so that U < 0 represents attractive
interaction.
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[22, 23].

1.3.2 Obtaining the ground state and the time evolution of the system

Let us now look at how the time evolution and the ground state of the sys-

tem described by the Fermi-Hubbard Hamiltonian is determined. Quan-

tum mechanics is dealt with in the second quantised form, and observ-

ables like the time-dependent spin up particle density ni↑(t) are obtained

by averaging over the state Ψ of our system: ni↑(t) = 〈Ψ(t)|n̂i↑|Ψ(t)〉 where

the wave-function at time t is obtained in the Schrödinger picture from

|Ψ(t)〉 = e−ıHFH t|Ψ(t = 0)〉, (1.3)

which is just the Schrödinger equation in a different form, and where ı is

the imaginary unit, HFH is the Fermi-Hubbard Hamiltonian, we have set

� = 1, and Ψ(t = 0) is the initial wave-function.

The initial ground state Ψ(t = 0) of the system can be obtained by start-

ing from a guess state Φ, if the guess state is not orthogonal to the ground

state, by determining

|Ψ(t = 0)〉 = lim
τ→∞

e−τĤFH |Φ〉
||e−τĤFH |Φ〉||

, (1.4)

where τ is analogous to imaginary time when compared to obtaining the

time evolution from the Schrödinger equation as discussed above. Indeed,

when discrete successive time steps are used to numerically determine

the ground state via Equation 1.4 the method is called ’Imaginary time

propagation’. Similarly, solving the Schrödinger equation 1.3 numerically

this way is called ’Real time propagation’.

Equation 1.4 can be proven by writing Φ in the eigenbasis of the Hamil-

tonian, i.e. Φ =
∑

i ci|φi〉, where ci ∈ C and ĤFH |φi〉 = Ei|φi〉. Then

e−τĤFH |Φ〉 = ∑
i e

−τEici|φ〉 and in the limit τ → ∞ only the ground state

is left3.

Next, we will consider a simple two-site system within the theoretical

framework laid above. The two-site system recurs in several different

physical systems, and it has been used to analyse the results of the nu-

merical simulations in Publications III-IV.
3Unless c0 = 0 which means that the ground state is orthogonal to the guess
state.
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1.3.3 The two-site system

The two-site Fermi-Hubbard system is analytically solvable (the solution

is generally called ’the Hubbard Dimer’), and we go through the solution

here in detail. Specifically, the time-evolution of the system with an ini-

tially empty state |∅〉 in the left lattice site and a doublon | ↑↓〉 in the

right lattice site without the harmonic trapping potential (for definitions

see Equation 1.5) is solved. The time-evolution will tell us about how

the initial pair breaks and later we will find out that this pair-breaking

mechanism is also applicable to more complicated systems.

As usual, the problem is solved by first expressing the initial state in

the eigenbasis of the Hamiltonian, then applying the time evolution us-

ing Equation 1.3, and finally determining the overlap between the un-

paired state and the time-evolved state. So there is a two-particle basis,

and the Fermi-Hubbard Hamiltonian conserves the number of particles.

Due to the anticommutation relations, a given order for the application of

fermionic operators must be chosen

| ↑, ↓〉 = c†1↑c
†
2↓|0〉, | ↓, ↑〉 = c†1↓c

†
2↑|0〉, (1.5)

| ↑↓, ∅〉 = c†1↑c
†
1↓|0〉, |∅, ↑↓〉 = c†2↑c

†
2↓|0〉,

where |0〉 = |∅, ∅〉 = |∅〉1|∅〉2, 1 denotes the left lattice site, and 2 the right

lattice site. The Hamiltonian can be divided to the hopping part and the

interaction part

HFH = HJ +Hint

HJ = −J
(
c†1↑c2↑ + c†1↓c2↓

)
+H.c.

Hint = −U
∑
i=1,2

ni ↑ni ↓. (1.6)

Then

HJ | ↑, ↓〉 = HJ c
†
1 ↑c

†
2 ↓|0〉

= −J
(
c†1↓c2↓c

†
1↑c

†
2↓|0〉+ c†2↑c1↑c

†
1↑c

†
2↓|0〉

)
= J (−| ↑↓, ∅ > −|∅, ↑↓>) , (1.7)

HJ | ↓, ↑> = HJ c
†
1↓c

†
2 ↑|0〉
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= −J
(
c†1↑c2↑c

†
1↓c

†
2↑|0〉+ c†2↓c1↓c

†
1↓c

†
2↑|0〉

)
= J (|∅, ↑↓> +| ↑↓, ∅ >) , (1.8)

and obviously,

HJ | ↑↓, 0 > = HJ c
†
1↑c

†
1↓|0〉

= −J
(
c†2↑c1 ↑c

†
1↑c

†
1 ↓|0〉+ c†2↓c1 ↓c

†
1↑c

†
1 ↓|0〉

)
= J (−| ↑, ↓> +| ↓, ↑>) , (1.9)

HJ |0, ↑↓> = HJ c
†
2↑c

†
2 ↓|0〉

= −J
(
c†1↑c2 ↑c

†
2↑c

†
2 ↓|0〉+ c†1↓c2 ↓c

†
2↑c

†
2 ↓|0〉

)
= J (−| ↑, ↓> +| ↓, ↑>) . (1.10)

Hence in the 4-dimensional Hilbert space, with the choice of the basis

given by Equation 1.5 (writing out Hint is trivial), HFH has the following

symmetric representation

HFH =

⎡
⎢⎢⎢⎢⎢⎣

0 0 −J −J
0 0 J J

−J J −U 0

−J J 0 −U

⎤
⎥⎥⎥⎥⎥⎦ . (1.11)

The Hamiltonian can be rewritten in a basis where it assumes a block-

diagonal form

Hbl =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0

0 −U 0 0

0 0 0 −2J

0 0 −2J −U

⎤
⎥⎥⎥⎥⎥⎦ . (1.12)

This representation corresponds to the following basis vectors

|T >=
1√
2
(| ↑, ↓〉+ | ↓, ↑〉)

|D− >=
1√
2
(| ↑↓, ∅〉 − |∅, ↑↓〉)

|S >= 1√
2
(| ↑, ↓〉 − | ↓, ↑〉)

|D+ >=
1√
2
(| ↑↓, ∅〉+ |∅, ↑↓〉) . (1.13)
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The upper block ofHbl is already diagonal, and by diagonalizing the lower

block, one obtains the eigenvalues

λ± = −U/2
[
1±

√
1 +

16J2

U2

]
. (1.14)

Defining

α± = +
U

4J

[
1±

√
1 +

16J2

U2

]
(1.15)

the eigenvectors corresponding to the lower block eigenvalues can be writ-

ten as

|v± >=
1√

1 + α2±
(|S〉+ α±|D+〉) . (1.16)

Hence the diagonalised eigenvectors and the corresponding eigenvalues

of the Hubbard dimer are given by

λ− = −U/2
[
1−

√
1 + 16J2

U2

]
(< 0) ⇔ |v−〉

λ0 = 0 ⇔ |T 〉
λU = −U ⇔ |D−〉
λ+ = −U/2

[
1 +

√
1 + 16J2

U2

]
(> U) ⇔ |v+〉.

(1.17)

Having diagonalised the Hamiltonian, let us move on to the time de-

pendent problem. The time evolution of an initial pair is desired, and

therefore the state

|φ(t = 0) >= |∅, ↑↓〉 = 1√
2
(|D+〉 − |D−〉) (1.18)

needs to be expressed in the eigenstates of the Hamiltonian in order to

apply the time evolution. Writing |D+〉 as a superposition of |v+〉 and |v−〉
gives

|∅, ↑↓〉 = 1√
2
(θ+|v+〉 − θ−|v−〉 − |D−〉), (1.19)

where

θ± =
(
√
1 + α2±)

(α+ − α−)
. (1.20)

Finally, the density of the unpaired state nun in the system after the time

evolution can be determined. This is given by nun(t) = 〈φ(t)|(1− n̂↑↓)|φ(t)〉,
where n̂↑↓ = n̂1,↑↓ + n̂2,↑↓. Having set � = 1, inserting Equation 1.3 we

obtain
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nun(t) = 〈∅, ↑↓ |e ıĤFH
� (1− n̂↑↓)e−

ıĤFH
� |∅, ↑↓〉. (1.21)

Substituting Equation 1.19, calculating this gives

nun(t) =
8

16+U2

J2

[1− cos(
√
U2 + 16J2t)], (1.22)

which determines the time dependence of doublon ↔ singlet oscillations

in the problem.

Let us now reflect on the result (Equation 1.22) obtained. Firstly, the re-

sult would be the same if we turned the problem around, starting from the

unpaired initial state | ↑, ↓〉 and determining the number of doublons as

a function of time n↑↓(t) instead. Secondly, the solution is symmetric be-

tween −U and U since the U terms in Equation 1.22 are squared. Thirdly,

we have assumed here that the time development is coherent, i.e. the

system is not measured during the time evolution. Another interesting

case is the stroboscopic observation [24] in which the system is repeatedly

measured in the intervals of t∗. The stroboscopic observation is relevant

for example when external factors interact with the system effectively

measuring it repeatedly. Comparing Equation 1.22 to the stroboscopic

measurement, nun(t) in the stroboscopic case would be obtained from the

binomial distribution representing the collapse of the wave-function at

intervals of t∗, see Figure 1.4.

...

Pair, P = 1 − p.

Pair, P = p(1 − p).

... ...

Pair, P = 1.

Singlet, P = p.

Singlet, P = (1−p)p. Pair, P = (1 − p).2

......

Singlet, (P = p  ).2

Time (1 / J)

t

2t

0

*

*

Figure 1.4. The probability triangle for singlets and doublons in a stroboscopic measure-
ment, collapsing the wave-function at repeated intervals t∗. Initially we have
a doublon in the right lattice site and hence based on the two-site result
p = 8

16+U2

J2

[1− cos(
√
U2 + 16J2t∗)]. P denotes the probability.

We have gone through the derivation of the simple two-site system dy-

namics in detail, and the result obtained here turns out to be important

in studying more complicated systems. In fact it is the foundation for the

analysis of the results of Publications III - IV, and the result will be re-

ferred to below. Before venturing forth, however, we need to look at some

of the most known theories of superconductivity, which will be important

for understanding the analysis of Publications I, II and V.
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1.4 Microscopic theories for superconductivity

We will first go through the widely-used Bardeen-Cooper-Schrieffer (BCS)

theory, then look at the extension of the theory to the BCS-BEC crossover

(which is of particular interest in ultracold Fermi gases), and finally we

will discuss the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superfluid that

is at the time of the writing under experimental and theoretical focus. The

features of the one-dimensional FFLO state are also outlined, as we will

examine the 1D FFLO state when discussing the results of Publication V.

Let us make a point here about superconductivity and superfluidity.

Superconductivity means flow of electricity without electrical resistance.

Superfluidity means flow of liquid without viscosity4. Nonetheless, the

terms superconductivity and superfluidity are used below sometimes in-

terchangeably, because the theories describing electronic superconductors

can be used to describe atom gas superfluids. Moreover, superconducting

electrons are also superfluid. But it should be kept in mind that in atomic

Fermi gases, however, particles are not charged and thus not supercon-

ducting.

1.4.1 BCS

The Bardeen-Cooper-Schrieffer theory is the first microscopic theory of

superconductivity. Developed in 1957 [7], it describes superconductivity

as an effect caused by the condensation of Cooper pairs. Explaining suc-

cessfully the properties of type-I (’normal’) superconductors such as alu-

minium and lead, John Bardeen, Leon Neil Cooper and Robert Schrieffer

received the Nobel Prize in Physics in 1972 for the theory. We shall now

proceed to derive the BCS theory in a uniform infinite lattice.

We start from the Fermi-Hubbard Hamiltonian with a chemical poten-

tial term μ which describes the energy cost of adding a particle into the

system. It will be needed to fix the average number of particles, noting

that the approximations in BCS will change the Hamiltonian so that it

does not conserve the particle number. The Hamiltonian is

H = −U∑i n̂i↑n̂i↓ − μ
∑

i(n̂i↑ + n̂i↓)− J
∑

i σ=↑,↓(c
†
i σci+1 σ +H.c.).

(1.23)

4There are several more in-depth definitions for superfluidity, none of which is
fully comprehensive, and will be not discussed here.
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The goal is, again, to diagonalise the Hamiltonian in order to obtain the

excitation spectrum (eigenvalues and eigenvectors).

Although the analytic diagonalisation for the simple two-site system

above was perhaps trivial, larger systems become difficult to solve ana-

lytically. In fact using a computer to obtain an exact solution for large

Fermi-Hubbard systems, a system that has the maximum size of only 10-

20 lattice sites in one dimension can be solved, with this limit reaching

the power of current supercomputers. Furthermore, we are usually inter-

ested in superfluids that have at least thousands of particles, so this is not

satisfactory. The term that causes the difficulty is the interaction term (in-

deed, without the interaction term the tight-binding Hamiltonian is easily

solvable analytically). Thus, in order to proceed we need to approximate

the interaction term in some way. Truly, there are two approximations

in BCS, and the first one is that we deal with the interaction term in the

mean-field picture only

Hint = −U ∑
i ĉ†i↑ĉi↑ĉ

†
i↓ĉi↓

≈ ∑
i −U〈ĉ†i↓ĉi↓〉ĉ†i↑ĉi↑

−U〈ĉ†i↑ĉi↑〉ĉ†i↓ĉi↓
+U〈ĉ†i↓ĉi↓〉〈ĉ†i↑ĉi↑〉
−U〈ĉ†i↑ĉi↓〉ĉi↑ĉ†i↓
−U〈ĉ†i↓ĉi↑〉ĉ†i↑ĉi↓
+U〈ĉ†i↑ĉi↓〉〈ĉ†i↓ĉi↑〉
+U〈ĉ†i↑ĉ†i↓〉ĉi↑ĉi↓
+U〈ĉi↑ĉi↓〉ĉ†i↑ĉ†i↓
−U〈ĉ†i↑ĉ†i↓〉〈ĉi↑ĉi↓〉, (1.24)

where we neglect the first to third terms (these are called the Hartree

terms), fourth to sixth terms (called Fock terms), and introduce the BCS

mean-field order parameter Δi = U〈ĉ†i↑ĉ†i↓〉. Then the total Hamiltonian

becomes

H =
∑
i

[−μ
∑
σ=↑,↓

(n̂iσ)− J
∑
σ=↑,↓

(c†i σci+1 σ + h.c.)

+Δiĉi↓ĉi↑ +Δ∗
i ĉ

†
i↑ĉ

†
i↓]−

Δ2

U
, (1.25)

which is now analytically diagonalisable and where ∗ denotes the com-

plex conjugate. To gain more physical insight the Hamiltonian is Fourier
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transformed to the momentum space and diagonalised there. Fourier

transforming the creation and annihilation operators using

ĉi↑ =
1√
L

∑
k

eıikck↑,

ĉ†i↑ =
1√
L

∑
k

e−ıikc†k↑, (1.26)

where ı is the imaginary unit, and L denotes the total number of lattice

sites in the system, one obtains for the chemical potential term in the

Hamiltonian

μ
∑
i,σ

n̂iσ =
μ

L

∑
i,k,k

′

e−ıi(k−k
′
)c†kσck′σ

= μ
∑
kσ

c†kσckσ, (1.27)

where the relation
∑i→∞

i=0 e−ıi(k−k
′
) = Lδk,k′ has been used, δ denoting the

Kronecker delta function. For the hopping term one obtains

J
∑
i,σ

c†i σci+1 σ =
J

L

∑
i,k,k

′

e−ı[i(k−k
′
)+k]c†kσck′σ

= J
∑
k

e−ıkc†kσckσ, (1.28)

so that combining this term with its Hermitian conjugate gives

∑
k,σ

2J cos(k)c†kσckσ, (1.29)

which is nothing but the familiar 2J cos(k) tight-binding term. Finally, for

the interaction terms one gets

∑
i

Δiĉ
†
i↑ĉ

†
i↓ =

1

L

∑
i,k,k

′

Δie
−ıi(k+k

′
)c†k↑c

†
k
′↓

= Δ
∑
k

c†k↑c
†
−k↓, (1.30)

where the second fundamental assumption of BCS has beenmade. Namely,

the order parameter Δ is assumed constant. The Hamiltonian in momen-

tum space thus reads
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H =
∑
k,σ

[2J(1− cos(k))− μ]c†kσckσ +Δ
∑
k

c†k↑c
†
−k↓

+Δ∗∑
k

ck↓c−k↑ − Δ2

U
, (1.31)

where the term
∑

k 2Jc
†
kσckσ has been added to have the correspondence

with the continuous system. To elaborate, in the limit of small momen-

tum the lattice dispersion 2J(1− cos(k)) now becomes proportional to the

free space dispersion k2

2m (note that � = 1). Adding the term is allowed

since this just effectively changes the zero of the chemical potential. Now,

diagonalising the Hamiltonian gives the eigenvalues and eigenvectors

Ek ⇔ |A〉
−Ek ⇔ |B〉,

(1.32)

where

Ek =
√
(ξk − μ)2 +Δ2, (1.33)

ξk = 2J(1 − cos(k)) (the non-interacting dispersion relation), |A〉 = α†|0〉,
|B〉 = β†|0〉, |0〉 is the excitation vacuum state, and

α = ukck↑ − vkc
†
−k↓

β = vkc
†
k↑ + ukc−k↓,

(1.34)

where uk = 1√
2

√
1 + ξk−μ

Ek
and vk = 1√

2

√
1− ξk−μ

Ek
. The relationships in

Equation 1.34 are known as the Bogoliubov transformation. The diago-

nalised Hamiltonian reads

HBCS =
∑
k

Ek(α
†
kαk + β†kβk − 1) + ξk − Δ2

U
. (1.35)

Having obtained the eigenspectrum of the problem, let us give it a lit-

tle thought. Importantly, the energy of the excitations in the system

Ek =
√
(ξk − μ)2 +Δ2 has become gapped. The minimum value that Ek

can have is Δ. In fact to create an excitation in the system, a minimum

energy equal to 2Δ is required (discussed more below). This is the origin

of superconductivity in BCS theory: if one has such an environment that

energy required for dissipative excitations is less than twice the energy

of the gap (e.g. for thermal dissipation kBT � 2Δ) then these dissipation

channels are not excited! Thus, electricity can be conducted without elec-

trical resistance or liquid can flow without friction. One can see that this
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is also the reason why superconductivity is seen at low temperatures: it

is the region where kBT � Δ.

� 3 � 2 �1 1 2 3

k

k F

� 3

� 2

�1

1

2

3

E

E F

Figure 1.5. The energy cost of breaking a Cooper pair as a function of momentum. We
have used Δ = 0.14EF , μ = 0.98EF , EF is the Fermi energy, and both the
momentum and energy plotted are in Fermi units as well. Blue graph rep-
resents the Ek excitations and the red graph −EK excitations, as defined in
Equation 1.32.

What is the reason for the appearance of the gap? The crucial steps

occur in the initial mean-field formulation and in Equation 1.30 when it

is assumed that Δ does not depend on the position. The latter effectively

pairs an up particle having momentum k with a down particle having

momentum −k, enforced by the Kronecker delta relation. Thus a Cooper

pair composed of particles of opposite momenta is created. The Cooper

pairs all have zero momentum and are composite bosons. Actually in the

above formalism we do not explicitly see the Cooper pairs, we see only the

energy spectrum (Equation 1.33, plotted in Figure 1.5) which tells us how

much energy it costs to break a Cooper pair with constituent momenta k

and −k from the condensate.

Now, from Equation 1.35 one sees that the ground state of the BCS

Hamiltonian is the vacuum state for α and β. Indeed, this state is the

BCS condensate which we are after:

|BCS〉 =
∏
k

(uk + vkc
†
k,↑c

†
−k,↓)|0〉, (1.36)

where we notice that the intuitive meaning of v2k is the probability of hav-

ing a Cooper pair at momentum k and the meaning of u2k is the probability

of not having it. From the ground state we can determine the energy cost

of creating an excitation to the system,
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Emin = 〈BCS|αkĤBCSα
†
k|BCS〉 (1.37)

−〈BCS|ĤBCS |BCS〉
= 2Ek

= 2
√

(ξk − μ)2 +Δ2 ≥ 2Δ.

Thus the minimum energy for creating an excitation in the system is

2Δ as discussed above, and we note that it does not matter whether the

excitation is of the form α† or β† as from the form of Equation 1.35 one

sees that their effect is the same.

An alert reader might notice that the value of either the gap Δ or the

chemical potential μ is not known. What is left to do is to solve these,

given the interaction, by what is known as self-consistent solution of the

gap and number equations. The number equation for up particles is

N↑ =
∑
k

〈c†k,↑c†k,↑〉

=
∑
k

〈(ukα†
k + vkβk)(ukαk + vkβ

†
k)〉

=
∑
k

u2k〈α†
kαk〉+ v2k〈βkβ†k〉

⇒ N↑ =
∑
k

u2knF (Ek) + v2knF (−Ek), (1.38)

where nF (E) = 1

e
− E

kBT +1

and the number equation of down particles is not

needed as there are the same number of up and down particles in BCS.

The gap equation is

Δ = U〈c†i,↑c†i,↓〉 (1.39)

= U〈
∑
k,k

′

e−ı(k+k
′
)ic†k,↑c

†
k
′
,↓〉

= U
∑
k

〈c†k,↑c†−k,↓〉

= U
∑
k

〈(ukα†
k + vkβk)(−vkαk + ukβ

†
k)〉

= U
∑
k

ukvk(〈α†
kαk〉+ 〈βkβ†k〉)

= U
∑
k

ukvk(2nF (Ek)− 1),

and because ukvk = − Δ
2Ek

the final form of the gap equation becomes
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1 = −U∑k
(1−2nF (Ek))

2Ek
. (1.40)

One starts with an initial guess for Δ and μ, inputs these guesses into

the number equation, allows these two to change in order to obtain a solu-

tion to the number equation, so that new values for Δ and μ are obtained.

These values are subsequently substituted into the gap equation, and

again new values ofΔ and μ are acquired. The procedure is repeated until

the values of Δ and μ do not any longer change in the iteration, and then

the correct values for the given interaction have been reached. Note that

when implementing the self-consistent solution numerically, one needs to

express the number of up particles using the Fermi momentum (the rela-

tionship depends on the dimensionality), and the number and gap equa-

tions need to be written in Fermi units (E = E∗

EF
, k = k∗

kF
), the starred

quantities denoting the original units.

At finite temperature one finds that above the critical temperature Tc

the self-consistent solution gives Δ = 0. Thus, the method allows for the

determination of the superfluid-normal transition.

Having covered perhaps the most important aspects of the BCS theory

in a lattice (we refer the reader to [25] for more detail), we are ready to

look at the BCS-BEC crossover in ultracold Fermi gases.

1.4.2 The mean-field BCS-BEC crossover

In this section we will digress from the lattice models and consider the

free space (continuum) case. Understanding continuum physics is very

important, as at the moment most of the experiments are done without

the lattice, although the trend seems to be moving towards lattice exper-

iments. We will try to point out things that are different in continuum

compared to the lattice and hopefully this comparison will be for the ben-

efit of the reader. Thus, let us discuss the continuum BCS-BEC crossover,

which is among the most intriguing phenomena occurring in ultracold

Fermi gases. The two-component continuum Hamiltonian is

H =

∫
d r
∑
i

ψ†
i (r)(−

∇2

2m
− μi)ψi(r) (1.41)

+
1

2

∫
d r

∫
dr

′
∑
i �=j

Vij(r− r
′
)ψ†

i (r)ψ
†
j(r

′
)ψj(r

′
)ψi(r)
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where ψi(r) and ψ
†
i (r) are the fermionic field operators annihilating and

creating a state i, respectively, where i =↑, ↓ (we will explain soon what

these spin states actually mean), and Vij(r− r
′
) depicts the form of the in-

teraction potential between the different spins. Usually one approximates

V with a contact potential Vij(r− r
′
) = Ucδ(r− r

′
) and then integrates out

the r
′
coordinate. Uc is then the interaction strength with the subscript c

denoting that the question is about a continuum variable.

One of the most interesting parameters that can be changed in ultracold

atomic gases is the interaction strength Uc between the atoms of different

spin. This sounds as spectacular as it is: imagine having a means to

change the strength of the Coulomb interaction by turning the knob of the

measurement apparatus. Resonant phenomena, however, are not scarce.

We can indeed find the resonant frequency of, for example, a jelly and

by drumming the jelly with this frequency it shatters to pieces (a common

experiment done in physics labs). A similar resonance phenomenon occurs

in the hyperfine spin states of ultracold atomic gases. Before elaborating

on the phenomenon which is called the Feshbach resonance [26, 27], let

us briefly discuss the hyperfine spin states.

Above, we have discussed systems with up and down spins, like elec-

trons. What we have instead in atomic gases is the hyperfine spin (F )

structure of the atoms which is caused by the interaction between the nu-

clear spin (I) and the total electron angular momentum (J): F = I + J.

Nonetheless, in ultracold gas experiments one often has only two hyper-

fine states occupied. If only two hyperfine states are occupied then we

can relabel the states as spin up and down and use all the two-component

analysis discussed above. Because of this similarity, we use the terms

spin and hyperfine spin interchangeably. Also the term pseudospin is

frequently used. What is interesting though is that also systems with

more than two hyperfine spin components can be created in cold atomic

gases, and in fact the multi-component gases are studied by many groups

[28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39].

Coming back to the Feshbach resonance, this phenomenon occurs be-

cause there is a bound state between the two hyperfine spin states. Ac-

tually, the ground state of the ultracold gas is a metal (the gas is ini-

tially produced by evaporating particles from a metal body), but the gas

is just so dilute (1019 particles
m3 , compared to air at room temperature with

1027 particles
m3 ) that three-body recombination processes are rare. The three-

body recombination is further suppressed by the Pauli exclusion princi-
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ple, and therefore in the time scale of the experiments (seconds) the sys-

tem stays in the metastable gas state. Two-body recombination, however,

can occur in the time scale of the experiments. The particles of opposite

spin can form a bound state, a molecule. The Feshbach molecules, be-

ing composite bosons, can Bose-Einstein condense. Feshbach resonances

that produce many of these molecules are known as narrow, and they

have been studied with interest [40]. Nevertheless, commonly the goal is

not to have a gas of molecules, but one wants to study the fermionic gas

instead. This is possible with broad Feshbach resonance in which the for-

mation of Feshbach molecules is suppressed due to time scale and energy

restrictions, and what happens instead is that the presence of the bound

state renormalises (changes) the spin-spin interaction strength between

two free particles.

Let us elaborate further on the above discussion. What makes the spin

interaction controllable is that one can change the energy of the bound

state (EB) with respect to the energy of two free particles (EF ) of differ-

ent spin by exposing the system to an external magnetic field (B). The

energy changes at the resonance so that EB − EF ∝ B − B0, where B0 is

the resonance position. From the first order perturbation theory point of

view the amplitude (a) of the two particles scattering to the bound state

is a ∝ 1
EB−EF

. In the case of a broad Feshbach resonance the particles,

due to energy and time scale restrictions, cannot stay in the bound state5

and thus the bound state just acts as a virtual intermediate state which

renormalises the free particle scattering length with a ∝ 1
EB−EF

∝ 1
B−B0

.

Therefore, by simply tuning the magnetic field all values of the scattering

length can be reached, and in particular when EB → EF the scattering

length diverges! This is the idea of the Feshbach resonance, and we refer

the reader to [12, 13, 14, 42, 43, 44, 45, 46] for more detail.

The point at which the scattering length diverges, the infinite interac-

tion range, is known as ’the unitarity regime’. The unitarity regime in

fermionic atom gases is experimentally very interesting [47, 48, 49, 50],

and it turns out that the only relevant length scale in this regime is de-

termined by the Fermi momentum kF . The unitarity regime might not be

that radical as it seems. The interaction which becomes infinitely strong

is the two-body interaction, but this does not tell us about the many-body

5Some fraction of particles do stay in the bound state also in a broad Feshbach
resonance. In fact, very recent findings [41] suggest that within the time scale of
10E−1

F
where EF is the Fermi energy and � = 1 particles occupy the bound state

to a large extent.
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interactions which give the real response of the system. However, the re-

search of the unitarity regime is made more interesting also by the fact

that it is thought to be analogous to other strongly correlated systems, for

example the quark-gluon plasma also studied in collisions in the Large

Hadron Collider in CERN [51, 52].

Feshbach resonances are not necessarily used in lattice experiments.

What matters in the case of the lattice is the ratio between J and U and

this can be changed by simply changing the lattice height, reaching all the

values of U
J in this way. In contrast, in continuum experiments the inter-

action Uc is compared to the kinetic term with the pre-factor 1
2m

6, and the

ratio of these is changed via the Feshbach resonance. In a Feshbach res-

onance, the two-body scattering length a determines the strength of the

spin-spin interaction Uc. To solve the full many-body response of the sys-

tem with the presence of the bound state in order to obtain a relationship

between a and Uc is a formidable task. Indeed, the theory which estab-

lishes the relationship is called the T-matrix scattering theory and it has

not been analytically solved for general values of a and Uc. All the limits

of the theory (in particular the limit when the scattering length diverges)

are not yet well understood. However, the weakly attractive interaction

limit of the theory is well established, the relationship in this limit being

Uc =
4πa

m
. (1.42)

In obtaining this formula, a contact interaction (delta function potential)

between the spins has been assumed, which creates divergences that need

to be corrected. For example the BCS gap equation in the continuum

case diverges for large k and needs to be modified in order to remove the

divergence. In fact the T-matrix theory corrects for the divergence, and

this is where the regularization of the BCS gap equation in continuum

rigorously comes from.

Although Equation 1.42 holds only in the weakly interacting limit, a

widely-used model for the whole crossover (a going from −∞ to ∞) is that

one simply uses the continuum BCS gap and number equations with the

relationship between the scattering length and the interaction given by

Equation 1.42. We note that the continuum BCS gap and number equa-

tions are actually the same as the lattice ones7, with the only changes

6
� = 1.

7Thus in the continuum case regularising the gap equation by the T-matrix anal-
ysis simply returns the gap equation to the lattice form, which is not surprising.
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being replacing the summation by integration and the lattice dispersion

1 − cos(k) by continuum dispersion k2. Indeed, we can attain the values

of Δ and μ for all interaction strengths UC by the self-consistent solution

of gap and number equations and doing so we have arrived at what is

known as the mean-field BCS-BEC crossover theory, first suggested by

[53, 54, 55].

The experiments in Feshbach resonant Fermi gases confirm that there

is a smooth crossover from the BEC to the BCS side. We refer the in-

trigued reader to Chapter 6 of [14] for an in-depth experimental review,

and point out that the crossover theory discussed above seems to be a

reasonable approximation when the temperature is much less than the

critical temperature for the superfluidity. The experiments are often done

at the unitarity, because there the interaction strength is the strongest,

and therefore the critical temperature for superfluidity is the highest. In-

deed, experiments in the BCS limit have not yet reached a temperature

low enough for superfluidity. However, the experimental measurements

ofΔ and μ at the unitarity can be compared to the values predicted by the

3D continuum mean-field BCS-BEC crossover. The results of the mean-

field BCS-BEC theory for a different interactions are presented in Figure

1.6 and comparing μ(a → ∞) to the experiments and to Quantum Monte

Carlo numerics is shown in Figure 1.7.
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Figure 1.6. The values of Δ (in green) and μ (in blue) obtained from solving the gap
and number equations self-consistently for different values of the interaction
Uc = 4πa

m
.

Finally, let us discuss the mean field BCS-BEC crossover in the light

of Figure 1.7. It is somewhat surprising that the value obtained in the

mean field BCS-BEC crossover matches the experimental observations

To elaborate, the regularisation is physically the same as providing high energy
cutoff which is provided in lattice.
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Theory / experiment β

BCS mean field −0.41

−0.58

−0.49

−0.54

−0.73

−0.59

QMC

Rice Li−6

Innsbruck Li−6

Duke Li−6

ENS Li−6

Jila K−40 −0.54

Figure 1.7. The value of chemical potential at unitarity μ(a → ∞) = (1+β)EF , whereEF

is the Fermi energy, as calculated by the BCS-BECmean field crossover in 3D
continuum, QuantumMonte Carlo numerics [56, 57, 58], and as measured in
different experiments [59, 60, 61, 62, 63]. All the other experimental results
are at finite temperature, but the JILA result is an extrapolation to T =

0. The mean-field BCS-BEC crossover theory and Quantum Monte Carlo
results have assumed T = 0. This table is a shortened summary of the review
presented in [59]. Note that the newest experiments indicate that the value
of β is lower (β ≈ −0.4). However, since these results are still unpublished
we quote here only the older data.

quite well. The fact that the BCS theory seems to provide reasonable

estimates for μ(a → ∞) and Δ(a → ∞) tells us that it cannot be too far

from the theory of superfluidity at unitarity.

Now let us take a look at Figure 1.6 and consider what the different

regimes mean physically. When the spin interactions are attractive (Uc <

0, the right side of Figure 1.6) in the BCS-BEC crossover, we have the

BCS side with pairing in momentum space between particles of opposite

momenta and condensation of Cooper pairs. In the BEC limit the spin

interaction is repulsive (Uc > 0, the left side of Figure 1.6), we have pair-

ing in real space, i.e. molecules that have a binding energy μ, and the

Cooper pairs which have become molecules in this limit again condense.

The unitarity is something in between: pairing has both momentum and

real space character.

These remarks close our discussion on the BCS superfluidity and the

BCS-BEC crossover, and we are ready to move on to even more uncharted

waters. Next we will discuss the Fulde-Ferrell-Larkin-Ovchinnikov su-

perfluid, which is important for understanding non-BCS superfluids, and

has not yet been directly observed in an experiment.
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1.4.3 The FFLO state

Two independent publications in 1964, one by Peter Fulde and Richard A.

Ferrell [64] and the other by Anatoly Larkin and Yuri Ovchinnikov [65],

predicted the existence of an imbalanced superfluid whose constituents

have non-zero center-of-mass momentum q. By imbalance we mean that

there are different number of spin up and spin down particles (N↑ �=
N↓). The superfluid state is called the Fulde-Ferrell-Larkin-Ovchinnikov

(FFLO) after its founding fathers. We are interested in the FFLO state be-

cause understanding exotic (non-BCS) superfluidity can shed light to the

mystery of high temperature superconductors, and to the phenomenon of

superfludity and superconductivity in general.

Indeed, realising the FFLO state has been a major goal since creat-

ing the first Fermi condensates. Even though indirect measurements

in solid-state [66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78] and in a

one-dimensional Fermi gas [79] are in accordance with the existence of

the state, the smoking gun signature revealing the FFLO momentum q is

lacking. To draw a parallel, it took 70 years to realise the Bose-Einstein

condensate since its theoretical prediction, and now we are closing to 50

years during which the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state

has evaded direct experimental observation. In Publication V we suggest

a simple scheme for detecting the FFLO state in one dimension, and let

us therefore now discuss the properties of the FFLO.

In contrast to the BCS theory, the order parameter in the FFLO state is

not constant. It is instead assumed to have oscillating position-dependence

so that Δi = Δeıiq, where Δ denotes again the amplitude of the order pa-

rameter and q is the FFLO momentum, the period at which the order pa-

rameter oscillates in space. Therefore, when in Equation 1.30 we Fourier

transform the annihilation and creation operators, one can see that the

FFLO definition of the order parameter leads to the condition δk′ ,−k+q in-

stead of δk′ ,−k. Physically this means that in BCS theory the Cooper pair

is formed of particles with momenta k and −k with the center-of-mass

momentum being zero, whereas in the FFLO state the condensate con-

stituents have momenta k+ q and −k (or equivalently k+ q
2 and −k+ q

2 in

the center-of-mass frame). Therefore, the Cooper pairs in the FFLO state

have center-of-mass momentum q.

The analysis of the BCS section above can be generalised to take into ac-

count FFLO pairing easily. In addition to the change inΔ, spin-dependent
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chemical potentials must be introduced (μ↑ and μ↓) because the number

of up and down particles is different. With these two changes one can re-

peat the BCS analysis, arriving at the mean-field FFLO theory. Simply,

the FFLO state is an extension for BCS to take into account N↑ �= N↓ and

pairing with finite center-of-mass momentum.

Now, a reasonable question to ask is that what kind of pairing then

actually takes place, is it BCS, FFLO or something else? Mean-field cal-

culations for a three dimensional sysytem in a lattice suggest that there

are several possibilities that can happen in an imbalanced superfluid [80].

The pairing can actually be of BCS type and the excess majority particles

which do not fit into the BCS state remain in the normal state. This

is called the phase separation (PS). Alternatively, any kind of superfluid

pairing can be less favourable than being in the normal state, and then

the gas does not form a superfluid. This is a well-known phenomenon

which has been experimentally observed also in imbalanced Fermi gases

[81], it occurs when the polarisation P =
N↑−N↓

N↑+N↓
is increased. The critical

polarisation when superfluidity is lost is known as the Chandrasekhar-

Clogston limit [82, 83] (used also in the context of critical magnetic fields

for breaking superfluidity). Third scenario is that in real space the gas is

a homogeneous superfluid, but in momentum space there is phase sepa-

ration. The scenario is known as the Breached Pair state (BP) and is char-

acterised by gapless excitations. In the case of fixed chemical potentials,

the Breached Pair state is a maximum of energy and therefore unstable.

Finally, the gas can form the FFLO state with pairs having momentum q.

Nonetheless, in experiments it can be difficult to identify the type of su-

perfluidity. The macroscopic behaviour of the superfluid (flow without fric-

tion, formation of vortex lattices) is similar for both FFLO and BCS type

of superfluids. Probing the microscopic origin of pair formation in a super-

fluid is not easy, and commonly one resorts to indirect, and inconclusive,

signatures to determine the microscopic state of the superfluid. What we

would like to have instead is a clear-cut signal showing the FFLOmomen-

tum q.

A quantitative feature that theoretically identifies the nature of the su-

perfluid is the pair momentum correlator nk, which is given by

nk =
1

2L

L∑
i,j

eı(i−j)kCij , (1.43)

where
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Cij = 〈Φ|c†i↑c†i↓cj↓cj↑|Φ〉, (1.44)

and L is the number of lattice sites in the system. The correlator nk for

a BCS state and for a FFLO state are shown in Figure 1.8. The experi-

mental problem for measuring nk is that one needs to probe the response

of the system in order to detect nk (i.e. for example measuring ground

state density profile is not enough), and although there are plenty of sug-

gestions for such probes [84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94] they

have not yet been realised. However, we show that in exotic systems q

can be measured in a rather direct way. The above discussion brings us

to such an interesting system: the strongly interacting FFLO state in one

dimension.
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Figure 1.8. The pair momentum correlator nk plotted for BCS and FFLO states.

1.4.4 The FFLO state in 1D

One-dimensional systems are special by nature. In 1D particles cannot

pass each other without interacting, and instead of a Fermi surface there

are Fermi points. Fluctuations become non-negligible, mean field theo-

ries fail, and excitations of systems are collective instead of single parti-

cle like [95]. As an example of a 1D system, imagine two balls that are

constrained to move on a line. The balls cannot pass each other or swap

places. The position and speed of the other ball necessarily affects the

positions on the line that the another ball can reach, since navigating

around the other is not possible. So, physics in 1D is quite different to

3D, and one would expect also the nature of superfluidity change. As the

BCS and FFLO descriptions are mean-field theories, they are not as such
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applicable in one dimension8.

The crossover from 3D superfluid to 1D superfluid is a field of ongoing

research both in theory and experiments [12, 13, 14]. Speaking of the

experiments, the 1D setting can be realised in ultracold gases by imposing

a two-dimensional optical lattice on the gas in the harmonic trap [79].

Then, if the lattice height is large enough only the lowest energy state

in each 2D lattice site is populated, and the gas is therefore confined to

move in only one dimension. In this way one produces an array of 1D-

tubes. If the coupling between the tubes is vanishing, one has a collection

of truly one-dimensional systems, whereas if the coupling is weak but non-

zero one says that the system is quasi-1D. Such systems have also been

suggested to be promising for the detection of the FFLO state [97, 98].

However, we will focus here on the fully 1D setting, not the quasi-1D one.

Now, a state analogous to the FFLO state exists in 1D. It is analogous in

the fundamental microscopic sense that the pairing correlations nk of this

state exhibit a peak at q and therefore the state, although not equivalent

to the 3D mean-field FFLO state, is called the 1D FFLO state. As the

1D FFLO state has become the candidate for observing the FFLO pairing

with momentum q experimentally, it has recently attracted much theo-

retical and experimental attention (see [79, 99] and references therein).

However, the properties of the state are not yet understood completely.

Although in principle systems without the trap in 1D can be analytically

solved using a method known as the Bethe Ansatz [100, 101], the Bethe

Ansatz solution is often so complicated that it hides the physical mean-

ing behind it. Thus the Bethe Ansatz solution is in many cases used only

to verify the results obtained otherwise. The presence of the trap com-

plicates things further. In higher dimensions one can consider the effect

of harmonic trapping in the local density approximation (LDA) sense, i.e.

dividing the system into intervals and approximating that the trap is con-

stant within these intervals (hence the effective chemical potential in each

interval being different). Then, uniform infinite system results are used

on each of the intervals. But LDA, being a mean field approach, is a worse

approximation in 1D than it is in higher dimensional systems.

Nonetheless, there are several facts that we know for certain, based

on Bethe Ansatz, numerical, and conformal field theory considerations

(see [79, 99, 102] and references therein). Firstly, the 1D FFLO state

is the ground state of the system for all non-zero polarisations at zero

8An interesting work [96] compares BCS to the Bethe Ansatz solution in 1D.
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temperature. This is in sharp contrast to 3D where the FFLO phase space

is quite limited [103, 104, 105]. Also, this means that the Chandrasekhar-

Clogston limit in 1D is P = 1. Secondly, the FFLO momentum is equal

to the difference of the up and down Fermi points: q = kF↑ − kF↓ so that

particles at Fermi surfaces pair with each other analogously to the 3D

FFLO. Let us discuss this feature more in detail.

If a 1D box with hard boundaries is considered, the boundary condi-

tions limit the possible excitations of the system into such that the non-

interacting nth energy level has momentum kn = nπ
L , where L is the length

of the box. Thus, if we have N↑ up particles we obtain kF =
N↑π
L ≈ n↑π,

where n↑ is the density of up particles. The approximation assumes a con-

stant density in the middle of the box, and is a good approximation unless

the particle number is very low. Importantly this means that

q = kF↑ − kF↓ = (n↑ − n↓)π, (1.45)

where we have dropped the approximation sign keeping in mind that

the equation is not exact for very low (< 10) number of particles. This,

obviously, does not provide a means for detecting the FFLO state sim-

ply from the density difference as the above relationship does not tell

us about pairing (Equation 1.45 holds for the non-interacting case) but

rather just that q predicted for the 1D FFLO state is the same as the

density difference. Let us then consider how turning on the interactions

affect n↑ − n↓ in the trap center. Although turning the spin interac-

tions on can change the occupancy of basis states differently for up and

down particles, the linear relationship between kF and n in 1D makes

the effect of the Fermi point rounding on n↑ − n↓ less pronounced than in

higher dimensions. Elaborating on this, if the effect of the interactions

is to round the population distribution around the Fermi point so that

kF↑ → kF↑ + δ, kF↓ → kF↓ + δ, the effect will cancel when taking the dif-

ference n↑π − n↓π = kF↑ + δ − (kF↓ + δ) = kF↑ − kF↓. Thus, as a first

approximation we can assume that Equation 1.45 holds also in the inter-

acting case. This is consistent with experimental and numerical findings

([79, 99] and references therein) showing that (n↑ − n↓)π at the center of

the trap also in the interacting case is equal to the FFLO momentum q as

predicted.

Based on the above discussion, we are left with the quest for evidence

of pairing at q. A setting that might provide the evidence is the strongly

interacting limit. In the strongly interacting limit a gas in the 1D FFLO
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state becomes a two-fluid gas, the two fluids being paired and unpaired

particles [106]. From the two-site system considerations one can see a rea-

son for this in lattice systems: if particles are in a doublon state, the am-

plitude to singlet conversion is suppressed by 8

16+U2

J2

(see Equation 1.22).

If they are in the singlet state, the amplitude to doublon conversion is

suppressed by the same factor. Hence the pairing physics in the U >> J

limit leads into a two-fluid gas in which the two components (pairs and

unpaired particles) do not interact. Bethe Ansatz considerations in con-

tinuum [106] show that the two gases form separate Fermi seas.

Now the time has come to turn our attention to the more sophisticated

numerical and analytical methods used in obtaining the results in this

thesis.
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2. Methods

In this section we will discuss the numerical method that has been used

to simulate the dynamics of the Fermi-Hubbard Hamiltonian (Equation

1.2) in Publications I - V, and the many-body theory used for calculating

the response of the system in Publications I-II. We will start off with the

numerical method which is called the time-evolving block decimation al-

gorithm.

2.1 Time-evolving block decimation algorithm

The time-evolving block decimation algorithm, abbreviated TEBD, was

developed in 2003 by Guifré Vidal in California Institute of Technology

[107]. TEBD is an algorithm used to simulate low dimensional quantum

many-body systems with a discrete lattice and low amount of entangle-

ment. In one dimensional systems the amount of the entanglement be-

tween the different lattice sites is usually the lowest [108]. Therefore,

TEBD is an ideal method for studying one-dimensional spin chains and,

more in general, quantum lattice systems. TEBD is closely related to the

density matrix renormalisation group (DMRG) method [109] although the

implementations of TEBD and DMRG differ [110].

TEBD works for both fermions and bosons, and there are no sign prob-

lems involved (c.f. Quantum Monte Carlo methods for fermions). The

method is exact when a numerical parameter called the Schmidt num-

ber χ is SL, where S is the number of possible local spin states and L is

the size of the lattice. However, in systems with low entanglement the

essential physics of the system is retained also with a cutoff for χ and

therefore TEBD is known as an essentially exact method. We will come

back to this, but let us first focus on explaining how TEBD works. We
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have used TEBD to calculate the ground states, time evolution and corre-

lation functions of systems described by the Fermi-Hubbard Hamiltonian.

The simulation steps needed to obtain these correspond to the imaginary

time propagation, the real time propagation, and pair correlation Cij , re-

spectively (i.e. Equations 1.3, 1.4, and 2.14). Having discussed each in

the previous chapter, we will next overview how the algorithm is used for

determining them.

2.1.1 The idea of the TEBD algorithm

The basic idea of TEBD is to reduce the Hilbert space in a controlled man-

ner. When in the previous chapter we went through the analytical solu-

tion of the two-site system and the BCS theory it was mentioned that

two-component Fermi-Hubbard systems with more than 10-20 lattice sys-

tems cannot be today solved exactly even with the best supercomputers.

Thus, approximations are needed to scale down the problem. Unlike in

e.g. the BCS theory, the approximations in TEBD do not involve estimat-

ing the interaction term by e.g. the mean-field assumption. In contrast,

in TEBD the Hilbert space is truncated using the Schmidt Decomposition

and Singular Value Decomposition (the latter is abbreviated SVD). Impor-

tantly, it turns out that the coefficients of the successive terms involved

in the series decompositions decay exponentially when there is low entan-

glement between the different lattice sites of the system. This enables the

truncation of the decompositions at χ and keeping the essential physics

in the description.

For the purpose of understanding how TEBD works, we will go through

how to write the quantummechanical state, how operations are performed

on it, and what is involved in the abovementioned decompositions and

their truncation. Let us begin by writing the state. Generally, any state

in a lattice can be written in the product form

|Ψ〉 =
∑

{s1},{s2},...,{sL}
cs1s2...sL |s1〉|s2〉...|sL〉, (2.1)

where the states {si}make the local Hilbert space basis of size S, and L is

the number of lattice sites. For the two component Fermi-Hubbard model

the states {si} are |∅〉, | ↑〉, | ↓〉, | ↑↓〉 and thus S = 4. Now, in order to

use the form shown in Equation 2.1 one needs a way for determining the

coefficients cs1s2...sL , which is why we turn to the Schmidt Decomposition.

The Schmidt theorem states that [111] one can divide the full quantum
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system |Ψ〉 into two subsystems

|Ψ〉 =
χ∑
i

λi|Ψi〉A ⊗ |Ψi〉B, (2.2)

where χ is the Schmidt number. So let us divide the spin chain between

sites 1 and 2 so that on the left side one has the first site and on the right

side there is the rest of the chain

|Ψ〉 =
χ∑
α1

λ[1]α1
|Ψ[1]

α1
〉 ⊗ |Ψ[2...L]

α1
〉, (2.3)

and then the spin chain is divided between sites 2 & 3,

|Ψ〉 =
χ∑

α1α2

λ[1]α1
|Ψ[1]

α1
〉 ⊗ λ[2]α2

|Ψ[2]
α1α2

〉 ⊗ |Ψ[3...L]
α2

〉, (2.4)

then between sites 3& 4, and so on. Moreover, the states |Ψ[i]〉 are mapped

to the local spin basis {si} so that

|Ψ[i]
αiαj

〉 =
∑
{si}

Γ[i]{si}
αiαj

|si〉|αj〉, (2.5)

where i is the lattice site index, see Figure 2.1.

Doing the division for the whole chain one obtains the coefficients for

the Matrix Product State we were after:

|Ψ〉 =
∑

{s1},{s2},...,{sL}
cs1s2...sL |s1〉|s2〉...|sL〉, (2.6)

where

cs1s2...sL = Γ[1]{s1}
α1

λ[1]α1
Γ[1]{s2}
α1α2

λ[2]α2
(2.7)

...Γ
[L−1]{sL−1}
αL−1αL

λ[L]αL
Γ[L]{sL}
αL

,

and summations for repeated indices (si and αi for each lattice site) are

omitted for clarity. Restating what λ and Γ mean, λs are the coefficients

of the Schmidt decomposition and Γs come from mapping the |Ψ[i]〉 states
onto the local spin basis.

Thus the state is now in the form used by TEBD. It is emphasised that in

Equation 2.2 the Schmidt number χ appeared, and the idea is to truncate

the series expansions at χ, making the problem computationally solvable.

Moving on to explaining how operations are done on the state of the above
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Figure 2.1. Schmidt decomposing the lattice chain one by one.

form, let us first take a look at how on-site operations are done. On-site

operations in the local spin basis denoted by Û are simple. Their effect is

to update the Γ matrices via the formula

Γ[i]{si}
αi−1αi

→ Γ̃[i]{si}
αi−1αi

=
∑
{s′i}

U
{si}
{s′

i
}Γ

[i]{s′i}
αi−1αi . (2.8)

So, only Γs on sites which are operated upon are affected, and the product

state has the same size after the operation. An example of an on-site

operation is c†i↑ which makes the elements in Γs with si =↑ and si =↑↓
zero at lattice site i and turns the elements in Γs with si = ∅ and si =↓
into the corresponding elements with si =↑ and si =↑↓, respectively.
The nearest-neighbour operations denoted by V̂, however, are not that

straightforward. Their effect is

V̂|Ψ〉 →
χ∑

αi−1,αi+1

∑
{si},{si+1}

θ
{si}{si+1}
αi−1αi+1

|Ψ[1...i−1]
αi−1

〉|si〉|si+1〉|Ψ[i+2...L]
αi+1

〉, (2.9)

where
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θ
{si}{si+1}
αi−1αi+1

=

χ∑
αi

∑
{s′i}{s

′
i+1

}
V

{si}{si+1}
{s′

i
}{s′

i+1
}λ

[i−1]
αi−1

Γ
[i]{s′i}
αi−1αiλ

[i]
αi

(2.10)

Γ
[i+1]{s′i+1

}
αiαi+1

λ[i+1]
αi+1

.

The V
{si}{si+1}
{s′

i
}{s′

i+1
} term above cannot be straightforwardly incorporated into

new λs and Γs after the {s′i}{s
′

i+1} summation in analogy to the onsite

case. The reason for this is that the nearest-neighbour term couples by

definition the spin states {si} and {si+1} between the two neighbouring

lattice sites. As a matter of fact, theV{si}{si+1}
{s′

i
}{s′

i+1
} term has increased the size

of the local Hilbert space at these sites by the factor of S. To prevent the

numerically unstable increase of the Hilbert space, the state needs to be

returned to the original λΓλΓ - form, which means cutting the increased

local Hilbert space by the factor of S. The cutting is achieved by doing a

singular value decomposition (SVD) on θ{si},{si+1}
αi−1αi+1

.

Using the SVD-theorem the term θ
{si},{si+1}
αi−1αi+1

is written in the form θ =

ADB†, where A and B, divided by original λs at the sites i − 1 and i + 1,

respectively, give the new Γ matrices and the diagonal elements of D give

the new λ vector. Only terms up to χ in the summation are kept in the

SVD and thus one obtains the state in the desired form

V̂i,i+1|Ψ〉 →
χ∑

αi−1αiαi+1

λ[i−1]
αi−1

Γ̃[i]{si}
αi−1αi

λ̃[i]αi
Γ̃
[i+1]{si+1}
αiαi+1

λ[i+1]
αi+1

(2.11)

|Ψ[1...i−1]
αi−1

〉|si〉|si+1〉|Ψ[i+2...L]
αi+1

〉,

where the Γ̃s and λ̃ denote the new matrices and eigenvalues obtained

from the Singular Value Decomposition. Knowing the formulation of the

state, operations, and decompositions in TEBD, we are ready to take a

look at how the method is applied in practice. The recipe for determining

the ground state is as follows:

1. Begin with an initial guess state. Usually the guess state is chosen

to be a simple product state. For example in a Fermi-Hubbard system

with five lattice sites the initial state could be |∅〉1| ↑〉2| ↑↓〉3| ↑〉4|∅〉5.
Such a non-entangled state in terms of λs and Γs means that in each

lattice site the first term of the Schmidt decomposition is one (Λ[i]
1 = 1)

and all the other terms are zero (Λ[i]
α = 0, α �= 1). Moreover, all the Γs

have only one nonzero element, (Γ[i],{si}
11 = 1, where {si} for example at

site i = 0 is |∅〉).
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2. Operate by the operator e−τĤFH

Remember that |Ψ(t = 0)〉 = limτ→∞
e−τĤFH |Φ〉

||e−τĤFH |Φ〉|| .

The exponential needs to be divided into smaller segments as oper-

ating by the full e−τĤFH would involve the exact diagonalisation of the

whole system. Thus, the full Hamiltonian is separated into even and

odd lattice sites ĤFH = Ĥodd + Ĥeven and the second approximation of

TEBD is made, namely the Suzuki-Trotter expansion

e−ı(Ĥodd+Ĥeven)δt = e−ıĤoddδte−ıĤevenδt +O(δt)2, (2.12)

where the error involved using the expansion scales with (δt)2. Also

higher order Suzuki-Trotter decompositions are possible, making the

time step error scale as (δt)4 or (δt6) if needed. After having separated

the even and odd terms one notices that now all the terms in Ĥodd com-

mute with each other (similarly for Ĥeven). Thus, one can further seg-

ment the exponential, now without the Suzuki-Trotter error, and the op-

eration simplifies into single on-site and nearest-neighbour operations

described by Equations 2.8 and 2.11, respectively.

3. Do step 2) until the ground state has been reached. There are

different convergence criteria one can use to determine that the ground

state is reached. For example, the change of λs and Γs can be monitored

and when their change is small enough one can deduce that the ground

state has converged. We have compared TEBD ground states to the

states obtained by the exact diagonalization with a low number of lattice

sites and found out that the results are the same.

The time evolution follows almost the same recipe, with imaginary time

replaced with real time, and the initial state for the time evolution is

usually the state obtained from the ground state calculation. With this

discussion we have compactly1 gone through the main points of TEBD.

Let us now look back and reflect on couple of the points.

The approximation done in the Schmidt truncation works well when,

sorting the eigenvalues in descending order, the eigenvalues decay quickly.

The decay of the eigenvalues is connected with the level of entanglement

between the different lattice sites. In the case of low energy states of a

1We refer to [107, 110, 112] for more thorough and rigorous description.
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1D system, the Schmidt coefficients decay approximately exponentially

[107, 108, 110, 112] and χ can be truncated effectively. A way of measur-

ing the entanglement between the different lattice sites of the system is

the von Neumann entropy S = Tr[ρ log ρ], where ρ is the density matrix,

and Tr denotes the trace. The entropy scales with available phase space

[108] and as in 1D the phase space is the smallest, the entropy is small-

est, and therefore the entanglement is low. Indeed, simulating higher

dimensional systems with TEBD can be very challenging as in addition

to the increased lattice site also higher χ would be required, based on the

entropy argument.

Continuing on the approximations of TEBD, the error caused by the

Suzuki-Trotter decomposition is controlled by reducing the time step. The

means of monitoring whether the Schmidt truncation or the Suzuki-Trotter

decomposition error affect the problem is that one calculates the same

problem with larger χ and/or smaller time step δt and observes whether

the results change. One can also look at the values of λ and see how they

decay.

The TEBD computational time scales with χ3 and L. As an example of

the resource use, for a system with S = 4, L = 150 and χ = 150, time-

evolution of the system up to t = 40 1
J (time in the inverse units of the

hopping element) takes 20 CPU hours and for the calculation 2 GB of soft

memory is required. The ground state calculations are usually quicker,

but they depend on how good is the guess for the ground state.

Finally, we have not explained how correlation functions can be calcu-

lated. We have developed a parallelised code for calculating the correla-

tors, which speeds up the calculation significantly. Although the paralleli-

sation will not be presented here, it is useful to show the recipe for simple

and efficient calculation of the correlations next.

2.1.2 Calculating correlation functions

Following the scheme suggested by Andrew Daley [112], correlation func-

tions of the form Cij = 〈Ψ|ÂiB̂j |Ψ〉, where Âi and B̂j are operators that

act only on single sites i and j can be calculated recursively using four

dimensional tensors G so that

Gi
αβ =

∑
γ,{δ}

λiγ
2
Γi{Xi}
γα Γ

i{Yi}
γβ

∗
(2.13)
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Gi+1
αβ =

∑
a,b,{δ}

Gi
abλ

i+1
a Γi+1{δ}

aα λi+1
b Γ

i+1{δ}
bβ

∗

...

Gj−1
αβ =

∑
a,b,{δ}

Gj−2
ab λj−1

a Γj−1{δ}
aα λj−1

b Γ
j−1{δ}
bβ

∗

Gj
αβ =

∑
a,b,{δ}

Gj−1
ab λjaλ

j+1
α Γ

j{Xj}
aα λjbΓ

j{Yj}
bβ

∗
λj+1
β ,

where i is the lattice site index, α, β and γ denote the Schmidt indices of λs

and Γs, δ = ∅, ↑, ↓ or ↑↓ is the spin index, * denotes the complex conjugate,

and X & Y represent the terms in the summation over spin indices that

survive after operating with Âi or B̂j . For example if Âi = c†i↑ then in the

spin summation only terms with Yi = ∅, ↓ and, correspondingly, Xi =↑, ↑↓
survive due to the orthogonality of spin states. The correlation function

Cij is obtained simply from Gj
αβ by summing over the remaining indices

Cij = 〈Ψ|ÂiB̂j |Ψ〉 =
∑
αβ

Gj
αβ . (2.14)

The states outside the range [i, j] do not contribute to the calculation as

the Gs from 0 to i − 1 are one due to the orthogonality. In the numeri-

cal implementation the calculation is sped up significantly by saving the

obtained Gj−1s. To elaborate, after having calculated Cij if one wants to

calculate Ci(j+1) then it is convenient to start from Gj−1 in the recursive

calculation with no need to repeat the earlier steps again.

We have now gone compactly through the implementation of TEBD, and

described a recipe for efficient calculation of correlation functions using

the method. Let us finally note that being able to calculate correlation

functions from the information about the state (λs and Γs) is an advan-

tage, useful particularly in the study of superfluid systems. This finishes

off our discussion on TEBD which is the numerical method that has been

used in obtaining results in Publications I-V. Next we will move away

from numerics, and explore an analytical method that can be applied in

the research of ultracold gases.

2.2 The Kadanoff-Baym formalism

Developed by Gordon Baym and Leo Kadanoff in 1961 [113, 114], the

Kadanoff-Baym formalism is a many-body theory used for calculating the

response of a system to an external perturbation. Understanding the re-

sponse of the system to perturbations is important, because it tells us
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valuable information of the state, e.g. whether the system is superfluid.

The idea of the Kadanoff-Baym method is simply that we will obtain a

better approximation for the response by requiring that the conserva-

tion laws present are satisfied. However, in order to understand how the

method works, we need to discuss the background of the problem first.

2.2.1 The linear response

The basic problem is that there is a many-body system described by a

wave-function Ψ(r, t). Then one applies a perturbation P (r, t) on the sys-

tem and asks how the system changes in response to the perturbation.

If the function describing the response χ(r, t, P ) is found, one can predict

how the system changes when for example subjected to radio frequency

radiation or shot with a laser. Importantly, some of the changes can be

specific to the state of the system, revealing e.g. antiferromagnetic order.

When the perturbation is small (P → 0) only the term first order in P

contributes, and the function χ(r, t) (which no longer has explicit depen-

dence on P ) becomes the linear response function. The state of the system

Φ(r, t) in the theory of linear response is given by

Φ(r, t) ≈ Ψ(r, t) +

∫ t

−∞
χ(r, t

′
)Ψ(r, t

′
)dt

′
. (2.15)

Equation 2.15 approximates that the state of the system Ψ does not

change significantly during the time that the perturbation is applied, and

therefore the final state Φ represents the weighted sum of all events that

have occurred in the system in the past when it was approximately in the

state Ψ. Being interested in determining the linear response function, let

us next look at how that can be done.

2.2.2 Determining the linear response function

Here we start off by outlining the building blocks of many-body linear

response theories, described extensively in e.g. [115]. Instead of wave-

functions one works with Green’s functions and self-energies. We will first

go through what these quantities mean and how is the linear response

function determined in such a picture. The linear response function χG to

a perturbation P is obtained from the Green’s function G by

χG ≈ δG

δP
, (2.16)
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when δP → 0. The Green’s function describes physically the probability

of a single particle propagating from one state to another. It is in general

obtained from the Dyson’s equation

G =
G0

1−G0Σ
, (2.17)

where Σ is the self-energy, G0(k, ω) = −1
E(k)−ıω is the free particle Green’s

function (which describes a probability of a free particle propagating from

one state to another, without the effect of other particles in the full many-

body system), E(k) is the free particle dispersion relation, and w is the

frequency. Formulating the problem in this manner all the troublesome

physics has been effectively put into the self-energy Σ. The self-energy

can be intuitively understood to mean the change in energy (or mass)

of a particle, when compared to the single free particle, as a result of

interactions with the other particles of the system.

The self-energy Σ cannot be usually written out without approximations

and this is where many-body theories can deviate from each other by se-

lecting a different approximation scheme for the self-energy. The choice of

Σ can be problematic, and approximations done can lead to problems that

need to be corrected later (c.f. delta function potential and regularisation

of the gap equation in the continuum BCS). For example, it may turn out

that the obtained χG breaks the conservation laws of the system. This

brings us to the Kadanoff-Baym method. It provides a recipe for enforc-

ing χG to obey the conservation laws present in the system regardless of

the approximation done for Σ.

Now, the way to make the χG to obey the conservation laws is that one

starts from the equation of motion2 for the Green’s function which has the

conservation laws embedded (see [113] for the proof)

G−1 = G−1
0 − Pτ −Σ, (2.18)

where τ is a matrix describing what states are coupled by the perturbation

P . In Equation 2.18 G, Σ and G0 have been written in the matrix form so

that the Green’s function describing the single particle propagation from

state Ψa(r, t) to state Ψb(r
′
, t

′
) is given by

Gab(r, t, r
′
, t

′
) = −ı〈TΨa(r, t)Ψ

†
b(r

′
, t

′
)〉, (2.19)

where T is the time-ordering operator and ı is the imaginary unit. Now,

2We have dropped the integrals in the e.o.m. for clarity.
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GG−1G = G (2.20)

⇒ δG

δP
=

δG

δP
G−1G+G

δG−1

δP
G+GG−1 δG

δP
(2.21)

⇒ δG

δP
= −G

δG−1

δP
G. (2.22)

But

δG−1

δP
= −τ − δΣ

δP
(2.23)

and hence

δG

δP
= G(τ +

δΣ

δP
)G. (2.24)

Substituting this into Equation 2.16 one obtains

χG ≈ G(τ +
δΣ

δP
)G, (2.25)

which is the final result. When Equation 2.25 is used for determining χG

it has been made sure that the conservation laws are satisfied. This is the

idea of Kadanoff-Baym method which have been used to derive results in

Publications I and II. Having finally covered most the physics required

to understand the publications presented in this thesis we move on to

discuss about the interesting results.
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3. Results

3.1 Radio-frequency spectroscopy for superfluid Fermi gases

We start off the analysis of the results of Publications I-V by looking at the

radio frequency (rf) spectrum of a superfluid one-dimensional Fermi gas

in a lattice. In Publication I we ask what happens when one of the spin

components forming the superfluid is transferred to a third spin state, as

shown in Figure 3.1. The aim of the work is to learn about the nature of

the 1D superfluid as well as the nature of the radio frequency transfer pro-

cess. In particular, we include in our analysis the interactions between the

final state (f ) and state ↑ (see Figure 3.1) [116, 117, 118]. The rf-spectrum
is obtained using TEBD, and the results of the TEBD time evolution are

compared to the results of the Kadanoff-Baym analytics with the BCS

approximation for the self energy.

f

Ω
U

  f

Figure 3.1. Spin up and down particles form a superfluid, and the system is perturbed by
rf-radiation transferring a particle from down state to the final state f . The
final state interaction with the up state is included in the analysis.
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The energy of the rf-radiation must overcome the pairing energy of the

superfluid state for the transfer to occur. Therefore the peak of the rf-

spectrum for the superfluid will shift compared to the rf-peak of the non-

interacting state. To describe this conveniently a parameter called de-

tuning δ = ωRF − ωfree is introduced, where ωfree is the position of the

transition peak for the non-interacting state, and ωRF is the frequency

of the rf-radiation. Now, the system is described by the Fermi-Hubbard

Hamiltonian with radio frequency coupling Ω between states ↓ and f

H = −J
∑

i,σ=↑,↓,f
c†iσci+1σ +H.c. (3.1)

−U↑↓
∑
i

n̂i↑n̂i↓ − U↓f
∑
i

n̂i↑n̂if

+
∑
i

δ

2
(c†i↓ci↓ − c†i fcif )

+Ω
∑
i

(c†ifci↓ + c†i↓cif ),

where the final state interactions between ↑ and f are included but the

final state interactions between ↓ and f are neglected as these do not shift

the rf-peak by symmetry arguments (rf-coupling being SU(2) invariant,

see [116]).

We calculate the ground state with TEBD, with δ = 0, Ω = 0, and forcing

nf = 0. The up and down components form a balanced (n↑ = n↓) superfluid

in the ground state. The time evolution of the system in response to the rf

pulse is calculated using TEBD time evolution, and as results we obtain

the rf-spectra and the detunings describing the rf-shift shown in Figures

1-3 in Publication I.

Moving on to discuss the results, sum rule considerations with Kadanoff-

Baym formalism and the BCS approximation for the self-energy predict

that the average shift of the rf-peak is given by [116]:

δ̄ = (U↑f − U↑↓)

(
n↑ +

Δ2

U2
↑↓n↓

)
, (3.2)

where Δ is the BCS gap. Based on the results presented in Figures 1-3

of Publication I, we find that for short times the Kadanoff-Baym + BCS

result is in good accordance with the spectral shift from TEBD numerics,

but for longer times the result starts to break down, the disparity between

the numerics and Equation 3.2 becoming higher with increasing U↑↓ and

U↑f (see Figures 1-2 in Publication I). In fact, the spectra presented in
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Figure 3 are all short time spectra (t = 0.8Ω−1) and the long time spectra

have different qualitative features. What happens is that at longer times

the spectrum is not symmetric, as it is often the case with systems that

have non-trivial structure in the density of states. The average position

of the whole spectrum is at all times consistent with Equation 3.2 and the

disparity we see in Figures 1-2 is caused by the fact that the non-trivial

shape of the spectrum starts to develop but at the short times presented

in Figure 3 we do not see it yet.

Moreover, the effect of the final state interactions [116] on the position

of the rf-peak are significant also in the 1D lattice system, verified by our

results shown in Figure 2 of Publication I. Having described the main re-

sults of Publication I let us now move on to the physics of the asymmetric

Josephson effect.

3.2 Is the Josephson effect really about coherent tunnelling of
Cooper pairs?

As discussed above, ultracold atomic gases provide a means of exploring

novel and exotic physics. A prime example of such an exotic system is a

gas in which one can effectively create different voltages for spin up and

down components across a Josephson junction [119]. The physics of this

kind of asymmetric Josephson junction is explored in Publication II. The

asymmetric junction can be created using for example spin dependent po-

tentials, which is depicted in Figure 3.2. Looking at Figure 3.2 we see

that there are two superfluids in separate wells, and the voltage differ-

ence across the wells comes from the potential drop being less for the up

component than the down component.

In Publication II we calculate the current between the wells as a re-

sponse to the perturbation caused by the asymmetric double well poten-

tial (Ω) using the Kadanoff-Baym formalism. Intuitively one might expect

that the Josephson current between the two wells has the same amplitude

of up and down particles, as the Cooper pairs tunnel together across the

barrier in the Josephson effect. However, we find that the amplitude of

spin up and spin down Josephson oscillations is different, contrary to the

intuition. This sounds quite interesting so let us elaborate on the work

done. The Hamiltonian of the system shown in Figure 3.2 is
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Ω2δ1

δ2

1Ω

Figure 3.2. A superfluid composed of spin up and down particles in a spin-dependent dou-
ble well. Ωs describe the tunnelling coupling and δs the potential difference
between the wells which is analogous to voltage.

H = H0 +HT (3.3)

H0 =

∫
d r
∑
i

ψ†
i (r)

(
− ∇2

2m
− μi

)
ψi(r) (3.4)

+
1

2

∫
d r
∑
i �=j

Uijψ
†
i (r)ψ

†
j(r)ψj(r)ψi(r)

HT =
δ1
2

∫
d r(ψ†

1(r)ψ1(r)− ψ†
3(r)ψ3(r)) (3.5)

+
δ2
2

∫
d r(ψ†

2(r)ψ2(r)− ψ†
4(r)ψ4(r))

+Ω1

∫
d rψ†

1(r)ψ3(r) + h.c.

+Ω2

∫
d rψ†

2(r)ψ4(r) + h.c.,

where ψi(r) and ψ†
i (r) are the fermionic field operators (in continuum)

annihilating and creating a state i, respectively, where i = 1 represents

up particle in the left well, i = 2 down particle in the left well, i = 3 up

particle in the right well, and i = 4 down particle in the right well, μi is the

chemical potential, and Uij are the interaction strengths having assumed

a delta function potential Uij = Vijδ(r−r′) and integrated out the r
′
degree

of freedom. We assume that U12 and U34 lead to BCS type of pairing.

Across-the-well interactions like U14 can be neglected. Ω represents the

coupling and δ the potential difference between the wells.

Calculating the Josephson currents using the Kadanoff-Baym formal-

ism with the BCS approximation for the self-energy we obtain:

IJ↑ (t) = IC↑ (δ2) sin[(δ1 + δ2)t] (3.6)
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IJ↓ (t) = IC↓ (δ1) sin[(δ1 + δ2)t], (3.7)

where IJ↑ denotes the Josephson current of up particle from left well to the

right well (note that IJ↑ and IJ↓ would be equal if the potentials for spin up

and down would be the same), and the amplitudes IC are given by

IC↑ (δ2) = 2 |Ω1Ω2ΠF (p = 0, δ2 + iη+)| (3.8)

IC↓ (δ1) = 2 |Ω1Ω2ΠF (p = 0, δ1 + iη+)| , (3.9)

where

ΠF (p, ω) =
1

βV

∑
q,γ

F12(q, γ)F∗
34(q− p, γ − ω), (3.10)

Fs are the anomalous BCS Green’s functions coming from the BCS ap-

proximation for self energy and Equation 3.10 comes from applying Equa-

tion 2.25. Note that compared to Equation 2.25 Fs have been Fourier

transformed to momentum and frequency space (p, ω). Furthermore, V

is the volume, β = 1/(kBT ), T is temperature, and kB is the Boltzmann

constant. The details of the Kadanoff-Baym calculation are presented in

the supplementary material of Publication II.

The important thing to notice in our result, Equations 3.8 and 3.9, is

that the amplitude of up component oscillations depends on δ2, whereas

the amplitude of down component oscillations depends on δ1. Having

these two different from each will therefore result in oscillations with a

different amplitude. Numerically solving Equations 3.6 and 3.7 confirms

this, see Figure 3.3. Thus we have arrived at the result that in the pres-

ence of the asymmetric potentials (i.e. different voltages) the constituents

of Cooper pairs oscillate at different amplitudes. We call this phenomenon

the asymmetric Josephson effect.

But why is this so? Should not the Cooper pairs tunnel together? Intu-

itive physics is somewhat lost in the many-body formalism and we would

like to understand the reason for the asymmetry. The clue for the physi-

cal origin of the effect comes from two sources. Firstly, we have solved the

dynamics of the system also using time-dependent perturbation theory to

the second order in the rf-couplings. Secondly, we have used exact diago-

nalisation to solve the time evolution of a small system comparable to the

double well set-up considered here. We refer the intrigued reader to Pub-

lication II for the proof and present here only the result of the analysis.

55



Results

0 5 10 15 20 25 30
−0.04

−0.02

0

0.02

0.04

Time (1 / EF)

C
ur

re
nt

 (k
3 F E

F)

I↑
I↓

Figure 3.3. The obtained spin up and down Josephson oscillations across the barrier,
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= 0.24, the chemical potential μ
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0.94 (Δ and μ chosen to be the same for the both sides of the well), δ1
EF

= 0.3,
δ2
EF

= 0.4, and EF is the Fermi energy.

By comparing the Kadanoff-Baym results (Equations 3.8 and 3.9) to the

perturbation theory and exact diagonalisation analysis it turns out that

the asymmetry is caused by the interference of the broken pair states, as

portrayed in Figure 3a of Publication II. Broken pair states are virtual

(intermediate) states in which e.g. up particle has tunnelled over the bar-

rier, but the down particle it is paired with has not. At zero temperature

the broken pair states are energetically forbidden since the energy to en-

ter them costs 2Δ. However, the virtual tunnelling via these states causes

the asymmetry in the current. In the symmetric (usual) Josephson effect

this phenomenon is not visible since, although the broken pair interfer-

ence term is present, the contributions from the broken pair states are

the same for both of the spins. Nonetheless, our work suggests that the

interference term should also be included to the description of the sym-

metric Josephson effect.

Summing up, we have predicted and explained a new phenomenon: the

spin-asymmetric Josephson effect. In the effect spin up and down com-

ponents oscillate at the Josephson frequency with different amplitudes

across the junction. This suggests that the traditional interpretation of

the Josephson effect as coherent tunnelling of Cooper pairs needs to be

modified in the light of the existence of the broken pair interference term.

3.3 The expansion of a band-insulator state

In Publication III we have investigated what happens if a one-dimensional

band insulator state is released to expand into the surrounding empty
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lattice. To elaborate, initially there is a state as shown in Figure 3.4, i.e.

pairs in the middle and empty lattice sites on the outside. The setup is the

same as in the experiment with a two dimensional lattice by [121]. Exper-

imentally the expansion is realised by having initially such a deep lattice

that the pairs localise on the lattice sites, and to initiate the expansion

the lattice depth is suddenly lowered.

O LLEE L−1 O L+1 R−1 R R R+1O O E E

Figure 3.4. Schematic representation of the initial state: the middle part of the lattice
is fully occupied (Oi) and the rest is empty (Ei). Sites EL, OL and OR, ER

represent the left and right edge of the cloud, respectively.

We have simulated the expansion using TEBD with the Fermi-Hubbard

Hamiltonian. The ground state has been input to the algorithm manu-

ally, as the initially localised pairs are described by an easy product state.

From the TEBD time evolution, we have obtained as results the density

profiles of up particles n↑(t), down particles n↓(t) and doublons1 n↑↓(t)

which represent doubly occupied sites c†↑c
†
↓|∅〉.

For convenience, we present the figures depicting the main results of

Publication III here as well. Figure 3.5 shows the obtained up particle and

doublon density profiles, respectively, in the case of the strong attractive

interaction U = −10J . The problem is up ↔ down symmetric so the down

particle density is not shown. Figure 3.6 shows the the density of unpaired

up particles n↑↓(t)− n↑(t) zoomed in at the initial cloud position.

To understand the physics behind the expansion we have analysed the

numerical results in the light of the two-site model as presented in Section

1.3.3. Initially, all the particles are paired. The central lattice sites are

Pauli blocked so the dynamics must initiate from the edges of the cloud.

Indeed, what we see in Figure 3.6 is the formation of unpaired particles at

the edges, with a characteristic oscillation frequency. We suggest that in

the strong interaction limit the edge dynamics is explained by considering

the two-site physics between the sites OL&EL and OR&ER as defined in

Figure 3.4.

1For the reader it might seem that a more natural definition for a ’doublon’ is
simply a ’pair’. However, whereas a doublon is certainly a localised pair, other
kind of pairs also exist. For example in BCS the pairs are not localised in position
space. Hence, to distinguish the nature of the pair as localised in position space
we use the term ’doublon’.
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Figure 3.5. Time evolution of
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ni ↑(t) (above) and
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ni ↑↓(t) (below) for U = −10.0J .
We are plotting the square roots of the density in order to enhance the low
density features important for the analysis.
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Figure 3.6. Unpaired particle expansion nun
i ↑ (t) = n↑↓(t)− n↑(t) for U = −5.0J .

The observed oscillation frequency and the amplitude of unpaired parti-

cles produced at the edge are compared to the predictions of the two-site

model. From Equation 1.22 the frequency and the amplitude are given

by
√
U2 + 16J2 and 8

16+U2

J2

, respectively. The comparison is presented in

Figures 6-7 of Publication III. Furthermore, the decay of the amplitude of

these oscillations can be calculated using the two-site model as well. The

results of this calculation are compared to the TEBD data in Figure 8 of

Publication III. Summing up the analysis reveals that the dynamics of the

problem is indeed explained by the simple two-site model. In other words,

the doublon ↔ singlet conversion occurs via the Hubbard Dimer mecha-

nism taking place at the cloud edge, as in the strong interaction limit the

two-site process at the edge dominates over higher order processes.

What is more, we see in Figure 3.5 that there are two ballistic expan-

sion fronts originating from the edge of the initial cloud. The outermost
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front is made of unpaired particles, whereas the innermost front is fully

paired. The two expand with constant velocities, i.e. the slopes of the

expansion seen in Figure 3.5 is constant. Next, we proceed to elucidate

what determines the velocities of the propagation.

The group velocity of the free (unpaired) particles in lattice is vg = dE
dk =

2J sin(k) since the lattice dispersion is 1 − 2J cos(k). Hypothesising that

the expansion velocity is given by the group velocity we expect therefore

that the velocity reflects the momentum distribution of the ground state.

In a band insulator we have a flat momentum distribution due to initially

localised pairs (described by an array of delta functions in position space).

Thus the maximum and average group velocities are obtained when k =

π
2 . Hence the predicted velocity for the unpaired particles is 2J . Looking

at the outermost (unpaired) wavefronts in Figure 3.5, the results of TEBD

numerics are in excellent accordance with this result.

Regarding the doublons, it can be shown that the doublon hopping cor-

responds to the hopping of a non-interacting particle with Jeff = 4J2

U

[95, 120]. Consequently, we expect that the innermost wavefronts expand

with velocity 4J2

U , which we also find to be in perfect agreement with the

TEBD results. Since the two wavefronts are ballistic, i.e. the expansion

can be described by the expansion of non-interacting particles with renor-

malised J for doublons, we are led to postulate that the expansion physics

is characterised by a two-fluid picture. In the two-fluid picture the dou-

blons and unpaired particles are separate fluids which do not interact

with each other, except at the cloud core. Only in the cloud core the den-

sity is high enough for the interaction between the fluids to occur. But the

deep core is Pauli blocked due to density of both spin components being

one. Hence the conversion between doublons and unpaired particles hap-

pens dominantly at the edges of the core. And, it is restated that the con-

version mechanism at the edges comes from the simple two-site physics.

Note also the hole expansion fronts moving into the core of the cloud in

Figure 3.5. The hole wavefronts are symmetric to particle wavefronts and

are also explained by two-site dynamics. Finally, it is pointed out that the

two-fluid model is supported by analytical Bethe Ansatz considerations in

1D continuum [106].

Using the density profiles we have determined the expansion velocity of

the gas cloud, and compared our results to the experiment [121] with the

2D lattice. Comparing Figure 5 of [121]2 and Figure 5 in Publication III

2The results of [121] have not been yet published at the time of the writing and
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we observe that although the experiment is in 2D and at finite temper-

ature the experimental results match the results of the TEBD numerics

well.

Before summarising, let us note that we have shown only the strongly

interacting |U |
J > 3 results here. For middle interactions 0.5 < |UJ | < 3 the

core becomes quickly Pauli unblocked, and the number of sites that con-

tribute to the dynamics increase. To determine the total time development

of the system in such a case one should consider the interference between

all different sites, and this in fact is something that we have considered

in Publication IV, although in a different context. For low interactions

|UJ | < 0.5 the system behaves like a non-interacting system, everything

expanding at speed 2J . Another interesting point that we have not dis-

cussed yet is that we observed U ↔ −U symmetry in the TEBD expansion

data. The time development of density profiles is exactly the same for all

U ↔ −U simulated. This feature is in accordance with the general time-

dependent properties of the Fermi-Hubbard model. Finally, it is intrigu-

ing that the 2D experimental results are so alike to our 1D simulations.

But perhaps it does not come as a surprise. After all, the Hubbard Dimer

analysis should carry on to higher dimensions as if one considers 2D the

core is again Pauli blocked and the two-site mechanism takes place at the

edges of the square. Considering only the direction perpendicular to the

edges, an assumption valid in the first order, the analysis simplifies into

the 1D model.

To summarise, in Publication III we have shown that the expansion of

the band insulator state is explained by a two-fluid model, the two fluids

being the doublons and unpaired particles. The interaction between the

two fluids is determined by the two-site Hubbard model dynamics. The

results of our 1D TEBD simulations are very similar to the 2D experi-

mental results [121], both showing the U ↔ −U symmetry and the core

expansion speed determined by the two-fluid Hubbard Dimer picture.

3.4 The collision of spin-polarized gases

In Publication IV we look at the physics of the collision of oppositely spin

polarised gases. The schematic of the system considered is shown in Fig-

ure 3.7. Initially we have two spin-dependent harmonic traps that sepa-

thus we do not have the permission for reprinting them here.
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rate the up and down spin components, and at time zero we release the

harmonic traps, allowing the gases to expand and collide. We employ

TEBD and the Fermi-Hubbard Hamiltonian with harmonic trapping to

describe the physics of the problem, and obtain the density profiles n↑(t),

n↓(t), and n↑↓(t) as the results of the simulation. Our setup is similar

to the experiment by [122], the differences being that we have a lattice

and consider 1D, whereas the experiment is in continuum and is not re-

stricted to 1D. However, we expect similarity with the experiment as the

Fermi-Hubbard model maps to the continuum Gaudin-Yang model in the

strongly interacting, low density limit [98, 120], and we observed that 1D

TEBD results match the results of 2D experiment [121] in the band insu-

lator case.

L R

Figure 3.7. The system. Spin up and down gases in a lattice are confined in two separate
harmonic potentials. At time zero the harmonic potentials are removed and
the gases expand and collide. Here, L and R mark the two central sites where
the expanding gases meet.

We suggest in Publication IV that the collision dynamics is determined

by an extension of the two-site Hubbard Dimer model which was dis-

cussed in the first chapter. Initially when the gases come into contact,

there is doublon population at only the two central lattice sites. When the

collision progresses, more particles enter the central sites, and the num-

ber of sites which have nonzero doublon population increases. We propose

that at each of the lattice sites with nonzero doublon population the un-

paired particle to doublon conversion occurs via the Hubbard Dimer mech-

anism. The aim is at formulating equations that describe the number of

doublons produced in the collision, as this is of experimental interest and

we might learn something from the qualitative dynamics by doing so. We

will now follow the analysis also presented in Publication IV to derive the

total number of doublons produced in the collision.

Let us define reaction centerR as all the lattice sites which have nonzero

population of both up and down particles. Moreover, we define the reac-

tion edge sites Edge(t) to mean the last sites that have both up and down

particles, when counting from the center of the collision. The positions of
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these edge sites change as a function of time as the collision progresses.

Now, unpaired particles will tunnel into the reaction center from the sites

which are adjacent to the edge sites. The density of unpaired particles

in these sites is denoted nNun(t). However, we need to take into account

also unpaired particles tunnelling out of the reaction center. They tunnel

out from the edge sites, at which the density is nEdge
un (t). Finally, in deter-

mining the total density of unpaired particles in the reaction center, we

must consider that the unpaired particles will convert into doublons via

Dimer dynamics. Summing up these contributions, we obtain for the total

density of unpaired particles in the reaction center (R)

ñRun(t) = 2(sin(Jt))2nNun(t)− 2(sin(Jt))2nEdge
un (t)− ñR↑↓(t), (3.11)

where ñR↑↓(t) is the total number of doublons and the 2(sin(Jt))2 term

comes from solving the time-dependent problem of |∅, ↑〉 converting into

| ↑, ∅〉3 in a similar fashion as the doublon ↔ unpaired particle conversion

has been solved in Section 1.3.3. Restating, the first term accounts for un-

paired particles entering the reaction center, the second term accounts for

unpaired particles leaving the reaction center and the last term accounts

for unpaired particles converted into doublons (and vice versa). Next we

consider the doublons. With the definitions above, we hypothesise that

the growth (G) and decay (D) of ñR↑↓(t) are given by

G(t) =

∫ τ=t

τ=0

∫ t
′
=t

t′=τ

8

16 + U2

J2

(3.12)

(1− cos(
√
U2 + 16J2(τ − t

′
))ñRun(t

′
)dt

′
dτ,

D(t) =

∫ τ=t

τ=0

∫ t
′
=t

t
′
=τ

8

16 + U2

J2

(3.13)

(1− cos(
√
U2 + 16J2(τ − t

′
))ñR↑↓(t

′
)dt

′
dτ,

and the total number of doublons is

ñR↑↓(t) = G(t)−D(t). (3.14)

Equations 3.12 - 3.14 could be solved self-consistently to obtain the full

time evolution predicted by the model (given the size and shape of the

3Note that this solution is another way of showing that the speed of the non-
interacting expansion is 2J .
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incoming polarised clouds, i.e. nNun(t)), but let us instead see if one learns

something from these equations by considering the high-interaction limit.

In the high-interaction limit, we note that the cosine oscillations occur at

such a high frequency that they will average out in the τ integration.

Moreover, in the high interaction limit |U | > 3, ñR↑↓(t) which is present

in the decay term in Equation 3.13 is negligible during the time of the

collision, because the Hubbard Dimer pre-factor 8

16+U2

J2

makes the density

or doublons produced much less than the number of unpaired particles

entering the reaction center from the expanding polarised clouds. Thus,

substituting G(t) into Equation 3.14 and neglecting the cosine term and

D(t) we have

ñR↑↓(t) =
∫ τ=t

τ=0

∫ t
′
=t

t
′
=τ

8

16 + U2

J2

ñRun(t
′
)dt

′
dτ. (3.15)

Now, substituting in ñRun(t
′
) from Equation 3.11 and again neglecting the

ñR↑↓(t) term we obtain

ñR↑↓(t) =
∫ τ=t

τ=0

∫ t
′
=t

t
′
=τ

8

16+U2

J2

[2(sin(Jt
′
))2nNun(t

′
) (3.16)

−2(sin(Jt
′
))2nEdge

un (t
′
)]dt

′
dτ, (3.17)

which is our final result. Before proceeding to analyse the numerical data

in the light of this result let us briefly reflect on where do the features

of Equation 3.16 come from. The pre-factor 8

16+U2

J2

is inherited from the

two-site model. However, the oscillation frequency of the two-site model

is no longer present. This is due to the fact that, in the high interaction

limit, the
√
U2 + 16J2-oscillations are fast compared to the time scale of

the collision so that they will average out in the τ integration. Therefore,

the only oscillating term that is left in Equation 3.16 originates from the

unpaired particle tunnelling in Equation 3.11.

The most important insight we obtain from Equation 3.16 is that we

expect that the number of doublons produced to be proportional to the

Hubbard Dimer amplitude 8

16+U2

J2

. Comparing the total number of dou-

blons produced in TEBD simulation to a 8

16+U2

J2

, where a is the constant

of proportionality, we find in the strong interaction limit the excellent fit

shown in Figure 3.8.

The above analysis provides us insight in the qualitative dynamics of

the problem. When |U | becomes large we expect that the amplitude of
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J

= 10.0. We
see that the colliding gases bounce back from each other.

doublon creation is low, and being unable to create doublons, the gases will

bounce back from each other conserving the momentum in the collision.

The TEBD results in Figure 3.9 show that in the strong interaction limit

this indeed is the case. The gases bounce back from each other and, again,

we find that there is U ⇔ −U symmetry in the collision due to the U term

being squared in the Hubbard Dimer formula. The interaction symmetry

is actually quite intriguing and perhaps initially unintuitive. One might

expect that attractively interacting gases will stick together, and repulsive

gases bounce back. Nonetheless, this is not the case4 due to the U ⇔ −U
symmetry present in the Fermi-Hubbard dynamics.

The experimental results by [122] are consistent with our results. In

the experiment it was observed that the gases bounce back from each

other with diffusivity being lower with higher interactions, and there is

4Another way of understanding the bouncing back is saying that the maximum
energy for transition possible in the single band Hubbard model is 4J . Thus
when |U | > 4J pair formation is out of resonance, and only unpaired particle -
pair oscillations can happen, but with a suppressed amplitude for the pairs.
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the U ⇔ −U symmetry.

In summary we have extended the two-fluid Hubbard Dimer analysis

originating from Publication III to explain the number of doublons pro-

duced in the collision of spin polarised one-dimensional gases, and thus

the dynamics of the problem. Our results are in qualitative accordance

with the experimental findings of [122].

3.5 Detecting the FFLO state in a time-of-flight measurement

As discussed in chapter 1, the FFLO state is a paradigm of exotic super-

fluidity. Realising and detecting the FFLO state has been long sought

after and is one of the most important goals in our field. In Publication V

we present a simple scheme for detecting the FFLO state by showing that

the FFLO pairing momentum q is reflected in the time-of-flight expansion

velocity of the edge of the gas cloud. The experimental realisation of our

suggestion can be achieved in the set-up of [79] by turning off the trapping

potential and measuring the density profiles as a function of time. Note

however that our analysis assumes lattice, and the experiment by [79] is

in continuum. We will address below how the lattice results should map

to the continuum case.

Similarly as in Publications III and IV we employ TEBD with the Fermi-

Hubbard Hamiltonian, this time with an infinite box potential which is

the same for the both spin components (up and down). Initially we have

a state with different number of up (N↑) and down (N↓) particles. As the

FFLO is the ground state in 1D for any nonzero polarisation, we expect

the ground state of the TEBD calculation to be a FFLO superfluid with

pairing correlations nk having a peak at the FFLO momentum q (see

Equation 1.43). Then, we remove the trapping potential and examine

the expansion dynamics of the system by looking at the density profiles

n↑, n↓, and n↑↓ obtained from the TEBD time evolution.

Figure 3.10 shows the ground state obtained from TEBD for N↑ = 10,

N↓ = 6, and U
J = −10.0. Also the pairing correlation function nk calculated

using TEBD is shown. Indeed, we see that the system is a 1D FFLO

superfluid, characterised by the peak at q = kF↑ − kF↓ in nk. Let us at

this stage point out that we have experimented with systems with larger

number of particles and larger lattices (up to N↑ = 0 − 40, N↓ = 0 − 40,

L = 320 where L is the lattice size) and seen that the density profiles,

65



Results

nk as well as the subsequent dynamics remain similar and therefore it is

sufficient to use lower particle numbers for which TEBD calculations are

significantly less time consuming.
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Figure 3.10. Above: The density profiles of up (n↑) and down spins (n↓) in the ground
state when N↑ = 10, N↓ = 6, U

J
= −10, and there is to a good approximation

an infinitely strong repulsive potential everywhere except the at the lattice
sites 66-85. Below: The pair momentum correlation function nk for the same
state. There are peaks at the FFLO momenta q = ±(kF↑ − kF↓) = 0.2π/L.

Figure 3.11 shows the doublon and unpaired particle density profiles

after removing the trap as obtained from TEBD time evolution. The

two-fluid picture discussed also in Publications III and IV is in place,

as the pairs and unpaired particles expand ballistically just like non-

interacting particles. Indeed, we have compared the expansion profiles

of non-interacting profiles and seen that x doublons and y unpaired par-

ticles expand from the trap qualitatively just like x and y non-interacting

particles. The comparison is presented in the supplementary material of

Publication V.

However, unlike in the band insulator expansion the momentum distri-

bution is not flat, but it reflects the underlying many-body physics. The

two fluids expand with velocities that are given by vun = dE
dk = 2J sin(k)

and v↑↓ = dE
dk = 4J2

U sin(k). In Figure 3.11 we do not see a single velocity

of expansion, but a spread of velocities, corresponding to the momentum
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distribution of the two fluids. The outermost expansion fronts for the dou-

blons and unpaired particles reflect the maximum occupied momentum

components of the two fluids. By measuring the speed of the expansion of

the outermost wavefronts, the maximum occupied momenta are given by

kmax
un = 1

2J arcsin(vmax
un ) and kmax

↑↓ = U
4J2 arcsin(v

max
↑↓ ). Remarkably, we find

that kmax
↑↓ = kF↓ and kmax

un = q, where kF denotes the Fermi momentum

and q is the FFLO momentum. Therefore, by measuring the maximum

expansion velocity of the unpaired component we obtain the FFLO mo-

mentum q from

q =
1

2J
arcsin(vmax

un ), (3.18)

which is our main result. Measuring the maximum velocity from the ex-

pansion speed of the cloud edge5 and comparing the result to the peak of

nk in the ground state we obtain the results presented in Figure 3.12. The

results of Figure 3.12 show that the time-of-flight expansion provides us a

5The cloud edge corresponds to the highest occupied momentum component. In
our simulations we see that the cloud edge expands with a constant velocity after
the initial dynamics during which the highest occupied momentum component
separates from the rest.
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simple means for detecting the elusive FFLO state. It is noted that for the

non-interacting case measuring the expansion velocity of the cloud edge

gives kF↑ instead of q, and therefore the signature we see is genuinely

caused by pairing, reflecting the FFLO peak in nk.
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Figure 3.12. The FFLO momentum q determined from the edge expansion velocity of
the unpaired cloud, compared to the q of the ground state, as a function
of N↓ describing the imbalance (N↑ = 10). We also show the expansion
momentum k �= q obtained in the case of a non-interacting gas.

One would like to understand the physical origin of the observed mo-

mentum structure seen in our time-of-flight measurement. Comparing

our results to the continuum Bethe Ansatz analysis for the Gaudin-Yang

model [106] sheds light to the nature of the 1D FFLO state. In the Bethe

Ansatz analysis in the strongly interacting limit it was found that the

system separates into two families of solutions which can be identified

as pairs and unpaired particles. These two fluids form separate Fermi

seas, and the momentum structure is such that the highest populated mo-

mentum components are given by kmax
pair = kF↓ and kmax

un = q, in a perfect

agreement with our numerical results in lattice. However, in the contin-

uum model the dispersion relation of the unpaired particles is k = k2un
2m

(remembering � = 1) and for pairs k =
k2pair
4m . Thus in the strongly in-

teracting Gaudin-Yang model the expansion velocity of pairs would not

be suppressed like in the Fermi-Hubbard model with the on-site interac-

tion U . Hence, in a continuum experiment pairs can actually expand with

speeds comparable to unpaired particles, or even faster. Fortunately, in

the current experiments [79] it is possible to resolve the hyperfine spin

components separately and therefore measuring the maximum velocity of
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the unpaired particles should not be a problem.

In Publication V we analysed also the case of harmonic trapping poten-

tial which is the form of trapping used in the experiments. The results

shown in Figure 4b of Publication V are very similar to the results of the

box trap.

Finishing the discussion on the results, let us briefly restate what we

have discussed about detecting the FFLO state. We have suggested that

the long-sought-for FFLO state can be detected in a time-of-flight mea-

surement by measuring the expansion velocity of the unpaired particles.

The detection could be achieved in the experimental setup of [79], keep-

ing in mind the differences between the predictions of the continuum and

lattice models.
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