1,466 research outputs found

    Identification of host genes potentially implicated in the Malus pumila and ‘Candidatus Phytoplasma mali’ interactions

    Get PDF
    Two‘Candidatus Phytoplasma mali’ strains (AP and AT), were studied in experimentally infected apple trees to analyze transcriptional profiles during interaction with phytoplasmas. Three groups of sample combinations were employed: healthy - infected, symptomatic - non-symptomatic, and AP-infected - AT-infected sample. The majority of genes were differently expressed between healthy and infected samples. Changes in gene expression involved a wide spectrum of biological functions, including processes of metabolism, cell defence, photosynthesis, transport, transcription, signal transduction and protein synthesis. The possible effect of phytoplasma infection on these processes and their relationships with disease development, symptom appearance and possible plant defence system is discussed. Keywords: Apple, phytoplasmas, ‘Ca. P. mali’, gene expression, transcriptom

    Bi-log-concave distribution functions

    Get PDF
    Nonparametric statistics for distribution functions F or densities f=F' under qualitative shape constraints provides an interesting alternative to classical parametric or entirely nonparametric approaches. We contribute to this area by considering a new shape constraint: F is said to be bi-log-concave, if both log(F) and log(1 - F) are concave. Many commonly considered distributions are compatible with this constraint. For instance, any c.d.f. F with log-concave density f = F' is bi-log-concave. But in contrast to the latter constraint, bi-log-concavity allows for multimodal densities. We provide various characterizations. It is shown that combining any nonparametric confidence band for F with the new shape-constraint leads to substantial improvements, particularly in the tails. To pinpoint this, we show that these confidence bands imply non-trivial confidence bounds for arbitrary moments and the moment generating function of F

    Aubry sets vs Mather sets in two degrees of freedom

    Full text link
    We study autonomous Tonelli Lagrangians on closed surfaces. We aim to clarify the relationship between the Aubry set and the Mather set, when the latter consists of periodic orbits which are not fixed points. Our main result says that in that case the Aubry set and the Mather set almost always coincide.Comment: Revised and expanded version. New proof of Lemma 2.3 (formerly Lemma 14
    • …
    corecore