79 research outputs found

    Hardware-In-the-Loop operations with an emulator rig for SOFC hybrid systems

    Get PDF
    This paper shows the Hardware-In-the-Loop (HIL) technique developed for the complete emulation of Solid Oxide Fuel Cell (SOFC) based hybrid systems. This approach is based on the coupling of an emulator test rig with a real-time software for components which are not included in the plant. The experimental facility is composed of a T100 microturbine (100 kW electrical power size) modified for the connection to an SOFC emulator device. This component is composed of both anodic and cathodic vessels including also the anodic recirculation system which is carried out with a single stage ejector, driven by an air flow in the primary duct. However, no real stack material was installed in the plant. For this reason, a real-time dynamic software was developed in the Matlab-Simulink environment including all the SOFC system components (the fuel cell stack with the calculation of the electrochemical aspects considering also the real losses, the reformer, and a cathodic recirculation based on a blower, etc.). This tool was coupled with the real system utilizing a User Datagram Protocol (UDP) data exchange approach (the model receives flow data from the plant at the inlet duct of the cathodic vessel, while it is able to operate on the turbine changing its set-point of electrical load or turbine outlet temperature). So, the software is operated to control plant properties to generate the effect of a real SOFC in the rig. In stand-alone mode the turbine load is changed with the objective of matching the measured Turbine Outlet Temperature (TOT) value with the calculated one by the model. In grid-connected mode the software/hardware matching is obtained through a direct manipulation of the TOT set-point. This approach was essential to analyze the matching issues between the SOFC and the micro gas turbine devoting several tests on critical operations, such as start-up, shutdown and load changes. Special attention was focused on tests carried out to solve the control system issues for the entire real hybrid plant emulated with this HIL approach. Hence, the innovative control strategies were developed and successfully tested considering both the Proportional Integral Derivative and advanced approaches. Thanks to the experimental tests carried out with this HIL system, a comparison between different control strategies was performed including a statistic analysis on the results The positive performance obtainable with a Model Predictive Control based technique was shown and discussed. So, the HIL system presented in this paper was essential to perform the experimental tests successfully (for real hybrid system development) without the risks of destroying the stack in case of failures. Mainly surge (especially during transient operations, such as load changes) and other critical conditions (e.g. carbon deposition, high pressure difference between the fuel cell sides, high thermal gradients in the stack, excessive thermal stress in the SOFC system components, etc.) have to be carefully avoided in complete plants

    Hydrogen production system from photovoltaic panels: experimental characterization and size optimization

    Get PDF
    In this paper an approach for the determination of the optimal size and management of a plant for hydrogen production from renewable source (photovoltaic panels) is presented. Hydrogen is produced by a pressurized alkaline electrolyser (42 kW) installed at the University Campus of Savona (Italy) in 2014 and fed by electrical energy produced by photovoltaic panels. Experimental tests have been carried out in order to analyze the performance curve of the electrolyser in different operative conditions, investigating the influence of the different parameters on the efficiency. The results have been implemented in a software tool in order to describe the behavior of the systems in off-design conditions. Since the electrical energy produced by photovoltaic panels and used to feed the electrolyser is strongly variable because of the random nature of the solar irradiance, a time-dependent hierarchical thermoeconomic analysis is carried out to evaluate both the optimal size and the management approach related to the system, considering a fixed size of 1 MW for the photovoltaic panels. The thermo-economic analysis is performed with the software tool W-ECoMP, developed by the authors\u2019 research group: the Italian energy scenario is considered, investigating the impact of electricity cost on the results as well

    Environmental economic analysis of speed reduction measure onboard container ships

    Get PDF
    : The International Maritime Organization (IMO) has concerned significant care to the reduction of ship emissions and improvement of energy efficiency through operational measures. One of those measures is ship speed reduction, which is classified as a short-term measure; in which the speed is reduced below its designed value. The present paper aims at evaluating the potential energy efficiency, and environmental and economic benefits because of applying speed reduction measures. The research methodology depends on establishing a simple mathematical model for technical, environmental, and economical aspects because of this concept. As a case study, container ships from different categories in a range of 2500-15,000 twenty-foot equivalent units (TEU) are investigated. The results show that a 2500 TEU ship can comply with the energy efficiency existing ship index (EEXI) by reducing the service speed to 19 knots. While for the bigger ships, the service speed must be 21.5 knots or below. Furthermore, the operational carbon intensity indicator (CII) has been evaluated for the case studies and found that the CII rating will keep its score between A and C levels if the service speed is equal to or below 19.5 knots. Moreover, the annual profit margin of the ship will be calculated based on applying speed reduction measures. Based on the economical results, the annual profit margin value, and its corresponding optimum speed change with the size of the vessel and the applicable status of carbon taxes

    sustainable district development a case of thermoeconomic optimization of an energy hub

    Get PDF
    Sustainable distric development requires innovative energy use solutions. The aim of this paper is to illustrate the operation of a real energy hub that can satisfy both thermal and electrical demands of a generic user. In particular, a specific case study developed around the smart grid of the University Campus of Savona (Italy), which just completed in 2014, is analysed. The grid includes different cogenerative prime movers and a storage system to manage the thermal load demand. Through a time-dependent thermo-economic hierarchical approach developed by the Authors, the work aims at optimizing the management strategy of the different prime movers to satisfy the energy demand, taking into proper account both the energetic and economic aspects. The analysis was carried out considering two different layouts, with and without a conventional stratified thermal storage, to evaluate the impact of this component in the management of the district

    EXPERIMENTAL RESULTS AND TRANSIENT MODEL VALIDATION OF AN EXTERNALLY FIRED MICRO GAS TURBINE

    Get PDF
    ABSTRACT This paper presents the performance of the world's first Externally Fired micro Gas Turbine (EFmGT) demonstration plant based on micro gas turbine technology. The plant was designed by Ansaldo Ricerche (ARI) s.r.l. and the Thermochemical Power Group (TPG) of the Università di Genova, using the in-house TPG codes TEMP (Thermoeconomic Modular Program) and TRANSEO. The plant was based on a recuperated 80 kW micro gas turbine (Elliott TA-80R), which was integrated with the externally fired cycle at the ARI laboratory. The first goal of the plant construction was the demonstration of the EFmGT system at full and part-load operations, mainly from the control point of view. The performance obtained in the field can be improved in the near future using high-temperature heat exchangers and apt external combustors, which should allow the system to operate at the actual micro gas turbine inlet temperature (900-950 °C). This paper presents the plant layout and the control system employed for regulating the microturbine power and rotational speed. The experimental results obtained by the pilot plant in early 2004 are shown: the feasibility of such a plant configuration has been demonstrated, and the control system has successfully regulated the shaft speed in all the tests performed. Finally, the plant model in TRANSEO, which was formerly used to design the control system, is shown to accurately simulate the plant behavior both at steady-state and transient conditions

    Experimental dynamic analysis on a T100 microturbine connected with different volume sizes

    Get PDF
    This paper shows experimental results obtained from a T100 microturbine connected with different volume sizes. The activity was carried out with the test rig developed at the University of Genoa for hybrid system emulation. However, these results apply to all the advanced cycles where a microturbine is connected with an additional external component responsible for volume size increase. Even if the tests were performed with a microturbine (for laboratory scale and for the related research interest in innovative cycles), similar analyses can be extended to on large size turbines. The main power systems including the effect of an additional volume connected with a turbine are: fuel cell based hybrid plants, humid cycles, externally fired layouts and innovative systems including high temperature thermal storage devices. Since in this case a 100 kW turbine was used, the volume was located between the recuperator outlet and the combustor inlet as in the typical cases related to small size plants. A modular vessel was used to perform and to compare the tests with different volume sizes. To highlight the volume size effect, preliminary experimental results were carried out considering the transient response due to an on/off bleed valve operation. So, the main differences between system parameters obtained for a bleed line closing operation are compared considering three different volume sizes. The main results reported in this paper are related to surge operations. This analysis was carried out to extend the knowledge about this risk condition: the systems equipped with large volume size connected with the machine present critical issues related to surge prevention especially during transient operations. For instance, if the T100 machine is operating with large volume components, the standard shutdown procedure can produce surge condition. This behavior is due to a slow depressurization rate in comparison with a standard microturbine. So, to produce surge conditions in this test rig, a valve operating in the main air path was closed to generate unstable behavior. It was possible to compare the effect of different volume sizes on main properties of the system using a modular vessel. Particular focus was devoted to the operational curve plotted on the compressor map. The system was equipped with different dynamic probes to measure the vibrations during normal and surge operations. The frequency analysis showed significant vibration increase not only during surge events but also close to the unstable condition. In details, possible surge precursor indicators were obtained to be used for the detection of risky machine operations. Since these surge precursors are considered important parameters for the control system point of view, an extensive experimental analysis was carried out considering the influence of volume size. These precursors were defined to produce control data (e.g. an on/off signal for a bleed valve) for surge prevention. The experimental data collected during these tests are analyzed with the objective of designing control systems to prevent surge conditions

    An investigation of modelling parameters for surge phenomenon in axial compressors

    Get PDF
    Axial compressors have been used in areas such as propulsion and power generation for many decades now. The development of compressors has been accompanied by the identification of gas dynamic instabilities during their operation, such as surge and stall, and the subsequent development of technologies to mitigate such problems. A widely employed lumped model for studying post stall phenomenon, usually referred to as Moore-Greitzer model, involves combining the geometric and operating parameters of the compression system into certain non-dimensional groups. In this paper, a numerical study of the different parameters affecting the surge phenomenon in axial compressors is performed. By unfurling the non-dimensional groups in the Moore-Greitzer model, the significance of the actual geometric and operational variables is identified

    Early surge detection in a mGT plant coupled with large volumes

    Get PDF
    The present work features post-processing methods applied to vibro-acoustic data acquired from a T100 micro gas turbine (mGT) plant coupled with different volume interposed plenums. Such experimental campaign was conducted by relying on a test bench developed at the University of Genoa for hybrid systems emulation. Nonetheless, the obtained results can be generalized to all advanced cycles in which a mGT is coupled with further external elements which cause an increase of plant overall volume size. Since in this case a 100 kW mGT was employed, the interposed vessel was placed between heat recovery system outlet and combustor inlet, such as in common cases relevant to small size plants. Post-processing techniques carried out on acoustic and vibrational measurements can make available innovative diagnostic tools and predictive solutions by relying on appropriate instability indicators which are defined basing only on microphone and accelerometer experimental data. The main results presented in this work are relevant to rotating stall and incipient surge proper identification. Such investigation has been performed to increase the knowledge about such dangerous compressor working conditions; indeed, energy systems characterized by significant interposed volumes coupled with centrifugal compressors feature issues relevant to structural damaging due to surge and rotating stall

    Early surge detection on a turbocharger used to pressurize a SOFC plant emulator

    Get PDF
    High-speed centrifugal compressors are commonly exploited to pressurize fuel cell-based hybrid energy systems. In such complex plants, because of significant interposed volumes due to fuel cells, dynamic compressor response can induce severe vibrations caused by low mass flow rates instability. In particular, surge strongly limits centrifugal compressors stable working region when moving towards low mass flow rate due to a change in system operating point. Consequently, a complete system identification is performed in order to adequately characterize compressor dynamic response for early surge detection. To this goal, a tailored experimental activity has been carried out at the Thermochemical Power Group of the University of Genoa on a vaneless diffuser compressor turbocharger used for the pressurization of an innovative solid oxide fuel cell (SOFC) emulator plant. Several post-processing methods have been performed on system vibro-acoustic responses to better predict and classify compressor status as stable or unstable. The obtained results provide original diagnostic insights for monitoring systems capable of preventing surge and other low mass flow unstable phenomena, such as rotating stall cells inception. Low mass flow rate fluid-dynamic instabilities prevention can extend compressor operating range, performance, and reliability to allow better integration with other plant components

    "Hybrid System Modelling"

    No full text
    INVITED LECTUR
    corecore