35 research outputs found
Performance of novel VUV-sensitive Silicon Photo-Multipliers for nEXO
Liquid xenon time projection chambers are promising detectors to search for
neutrinoless double beta decay (0), due to their response
uniformity, monolithic sensitive volume, scalability to large target masses,
and suitability for extremely low background operations. The nEXO collaboration
has designed a tonne-scale time projection chamber that aims to search for
0 of \ce{^{136}Xe} with projected half-life sensitivity of
~yr. To reach this sensitivity, the design goal for nEXO is
1\% energy resolution at the decay -value (~keV).
Reaching this resolution requires the efficient collection of both the
ionization and scintillation produced in the detector. The nEXO design employs
Silicon Photo-Multipliers (SiPMs) to detect the vacuum ultra-violet, 175 nm
scintillation light of liquid xenon. This paper reports on the characterization
of the newest vacuum ultra-violet sensitive Fondazione Bruno Kessler VUVHD3
SiPMs specifically designed for nEXO, as well as new measurements on new test
samples of previously characterised Hamamatsu VUV4 Multi Pixel Photon Counters
(MPPCs). Various SiPM and MPPC parameters, such as dark noise, gain, direct
crosstalk, correlated avalanches and photon detection efficiency were measured
as a function of the applied over voltage and wavelength at liquid xenon
temperature (163~K). The results from this study are used to provide updated
estimates of the achievable energy resolution at the decay -value for the
nEXO design
An integrated online radioassay data storage and analytics tool for nEXO
Large-scale low-background detectors are increasingly used in rare-event
searches as experimental collaborations push for enhanced sensitivity. However,
building such detectors, in practice, creates an abundance of radioassay data
especially during the conceptual phase of an experiment when hundreds of
materials are screened for radiopurity. A tool is needed to manage and make use
of the radioassay screening data to quantitatively assess detector design
options. We have developed a Materials Database Application for the nEXO
experiment to serve this purpose. This paper describes this database, explains
how it functions, and discusses how it streamlines the design of the
experiment
Study of ultrasonic propagation through Kelvin-Helmoltz instabilities for monitoring high-temperature fluid
International audienceno abstrac
Validation of predicted path of thermally deflected ultrasonic waves
International audienceno abstrac
Ultrasound propagation through Kelvin-Helmholtz and Von Karman instabilities
International audienceno abstrac
Simplified modelling of liquid sodium medium with temperature gradient from thermohydraulic measurements to simulate wave propagation in liquid sodium. Application to ultrasonic thermometry in Sodium Fast Reactor
International audienceno abstrac
Etude d’une méthode ultrasonore d’estimation des températures du sodium liquide en sortie de cœur de SFR
National audienceno abstrac
Development of ultrasonic propagation simulation for acoustic thermometry in liquid sodium
International audienceno abstrac