5,330 research outputs found

    A recalibration of IUE NEWSIPS low dispersion data

    Full text link
    While the low dispersion IUE NEWSIPS data products represent a significant improvement over original IUE SIPS data, they still contain serious systematic effects which compromise their utility for certain applications. We show that NEWSIPS low resolution data are internally consistent to only 10-15% at best, with the majority of the problem due to time dependent systematic effects. In addition, the NEWSIPS flux calibration is shown to be inconsistent by nearly 10%. We examine the origin of these problems and proceed to formulate and apply algorithms to correct them to ~ 3% level -- a factor of 5 improvement in accuracy. Because of the temporal systematics, transforming the corrected data to the IUE flux calibration becomes ambiguous. Therefore, we elect to transform the corrected data onto the HST FOS system. This system is far more self-consistent, and transforming the IUE data to it places data from both telescopes on a single system. Finally, we argue that much of the remaining 3% systematic effects in the corrected data is traceable to problems with the NEWSIPS intensity transformation function (ITF). The accuracy could probably be doubled by rederiving the ITF.Comment: Submitted to ApJ Supplement, 35 pages, 13 figures, LaTeX - AASTEX aas2pp4.st

    Signature of wide-spread clumping in B supergiant winds

    Full text link
    We seek to establish additional observational signatures of the effects of clumping in OB star winds. The action of clumping on strategic wind-formed spectral lines is tested to steer the development of models for clumped winds and thus improve the reliability of mass-loss determinations for massive stars.The SiIV 1400 resonance line doublets of B0 to B5 supergiants are analysed using empirical line-synthesis models. The focus is on decoding information on wind clumping from measurements of ratios of the radial optical depths (tau_(rad)(w)) of the red and blue components of the SiIV doublet. We exploit in particular the fact that the two doublet components are decoupled and formed independently for targets with relatively low wind terminal velocities. Line-synthesis analyses reveal that the mean ratio of tau_(rad)(w) of the blue to red SiIV components are rarely close to the canonical value of ~ 2 (expected from atomic constants), and spread instead over a range of values between ~1 and 2. These results are interpreted in terms of a photosphere that is partially obscured by optically thick structures in the outflowing gas.The spectroscopic signatures established in this study demonstrate the wide-spread existence of wind clumping in B supergiants. The additional information in unsaturated doublet profiles provides a means to quantify the porosity of the winds.Comment: Accepted for publication in A&A Letter

    An Analysis of the Shapes of Interstellar Extinction Curves. VI. The Near-IR Extinction Law

    Full text link
    We combine new HST/ACS observations and existing data to investigate the wavelength dependence of NIR extinction. Previous studies suggest a power-law form, with a "universal" value of the exponent, although some recent observations indicate that significant sight line-to-sight line variability may exist. We show that a power-law model provides an excellent fit to most NIR extinction curves, but that the value of the power, beta, varies significantly from sight line-to-sight line. Therefore, it seems that a "universal NIR extinction law" is not possible. Instead, we find that as beta decreases, R(V) [=A(V)/E(B-V)] tends to increase, suggesting that NIR extinction curves which have been considered "peculiar" may, in fact, be typical for different R(V) values. We show that the power law parameters can depend on the wavelength interval used to derive them, with the beta increasing as longer wavelengths are included. This result implies that extrapolating power law fits to determine R(V) is unreliable. To avoid this problem, we adopt a different functional form for NIR extinction. This new form mimics a power law whose exponent increases with wavelength, has only 2 free parameters, can fit all of our curves over a longer wavelength baseline and to higher precision, and produces R(V) values which are consistent with independent estimates and commonly used methods for estimating R(V). Furthermore, unlike the power law model, it gives R(V)'s that are independent of the wavelength interval used to derive them. It also suggests that the relation R(V) = -1.36 E(K-V)/E(B-V) - 0.79 can estimate R(V) to +/-0.12. Finally, we use model extinction curves to show that our extinction curves are in accord with theoretical expectations.Comment: To appear in the Astrophysical Journa

    Detection of a Hot Binary Companion of η\eta Carinae

    Full text link
    We report the detection of a hot companion of η\eta Carinae using high resolution spectra (905 - 1180 \AA) obtained with the Far Ultraviolet Spectroscopic Explorer (\fuse) satellite. Observations were obtained at two epochs of the 2024-day orbit: 2003 June during ingress to the 2003.5 X-ray eclipse and 2004 April several months after egress. These data show that essentially all the far-UV flux from \etacar shortward of \lya disappeared at least two days before the start of the X-ray eclipse (2003 June 29), implying that the hot companion, \etaB, was also eclipsed by the dense wind or extended atmosphere of \etaA. Analysis of the far-UV spectrum shows that \etaB is a luminous hot star. The \nii \wll1084-1086 emission feature suggests that it may be nitrogen-rich. The observed far-UV flux levels and spectral features, combined with the timing of their disappearance, is consistent with \etacar\ being a massive binary system

    Structure and clumping in the fast wind of NGC6543

    Full text link
    Far-UV spectroscopy from the FUSE satellite is analysed to uniquely probe spatial structure and clumping in the fast wind of the central star of the H-rich planetary nebula NGC6543 (HD164963). Time-series data of the unsaturated PV 1118, 1128 resonance line P Cygni profiles provide a very sensitive diagnostic of variable wind conditions in the outflow. We report on the discovery of episodic and recurrent optical depth enhancements in the PV absorption troughs, with some evidence for a 0.17-day modulation time-scale. SEI line-synthesis modelling is used to derive physical properties, including the optical depth evolution of individual `events'. The characteristics of these features are essentially identical to the `discrete absorption components' (DACs) commonly seen in the UV lines of massive OB stars. We have also employed the unified model atmosphere code CMFGEN to explore spectroscopic signatures of clumping, and report in particular on the clear sensitivity of the PV lines to the clump volume filling factor. The results presented here have implications for the downward revision of mass-loss rates in PN central stars. We conclude that the temporal structures seen in the PV lines of NGC6543 likely have a physical origin that is similar to that operating in massive, luminous stars, and may be related to near-surface perturbations caused by stellar pulsation and/or magnetic fields.Comment: 11 pages, 11 figures. Accepted for publication in MNRA
    corecore