18 research outputs found

    Nanocellulose from the Appalachian Hardwood Forest and Its Potential Applications

    Get PDF
    Nanofibrillated cellulose (NFCs) are nanoscale fibers of high aspect ratio that can be isolated from a wide variety of cellulosic sources, including wood and bacterial cellulose. With high strength despite of their low density, NFCs are a promising renewable building block for the preparation of nanostructured materials and composites. To fabricate NFC-based materials with improved mechanical and chemical properties and additional new functionalities for different applications, it is essential to tailor the surface properties of individual NFCs. The surface structures control the interactions between NFCs and ultimately dictate the structure and macroscale properties of the bulk material. This research was focused on determining the feasibility of using hardwood residues from the Appalachian Hardwood Forest for the production of nanofibrillated cellulose (NFC). In addition, some modifications during the NFC production process were performed to evaluate their improvement to incorporate more antimicrobial copper in the cellulosic backbone. This thesis has been divided in the following main chapters: 1) Literature review regarding to nanocellulosic materials and their production processes, 2) Nanocellulose current and potential applications, 3) Nanofibrillated cellulose from the Appalachian Hardwood logging residues, 4) Modified nanofibrillated from the Appalachian Hardwood logging residues, 5) Preparation of nanocellulose using ionic liquids -- A review, 6) Nanocellulose-based drug delivery system -- A review, 7) Safety aspects on the utilization of lignocellulosic based materials - A review

    Analyzing the Function of Business Intelligence in Academic Libraries

    Get PDF
    Purpose: The research was conducted to investigate the impact of business intelligence on the key activities of academic libraries. Method: This study is applied research with an exploratory nature done with the mixed method. The approach of the research is part-to-whole (induction), developed in two stages. First, the key activities were identified with the documentary research (library) method and validated by the fuzzy Delphi qualitative method in two stages. Then, the impact of business intelligence on the identified activities was investigated with the quantitative survey method. The data collection tool was a structured questionnaire, and the statistical population was selected by purposive sampling. Results: Forty-three key activities were identified in 11 functioning fields: 1) strategic management, 2) planning, 3) human resource management, 4) knowledge management, 5) physical space management, 6) evaluation, 7) extra-organizational communication, 8) group building, 9) partnership and cooperation, 10) management Information and organization, 11) reference and information services. Business intelligence in the field of "planning" has the greatest effect while its effect in the field of "physical space management" is the least. Finally, according to experts' opinions, the impact of business intelligence on the key activities of academic libraries was estimated as "high". The greatest impact was observed in the key activity of "change management" and the least in "agility in adapting to environmental changes". Conclusion: By aligning their key activities with technological developments, especially business intelligence, academic libraries can provide innovative and creative services to keep up with the changing society by using data and analytical methods, and effectively increase efficiency in libraries. It is suggested that increasing awareness at managerial levels about the importance of business intelligence in libraries be among the high-priority programs of senior managers of academic libraries

    Oral administration of alanyl-glutamine and glutamine improve random pattern dorsal skin flap survival in rats

    Get PDF
    Objective(s): Skin flap necrosis is the most common postoperative side effect in reconstructive surgeries. Glutamine (GLN) has been shown to accelerate wound healing process. The purpose of this study was to evaluate the effects of GLN either in free form or in the dipeptide form along with L- alanyl (Ala-GLN) on random skin flaps survival in rats.Materials and Methods: Dorsal skin flaps with caudal bases (8 Ă—2 cm) were established in 24 adult male Wistar rats. Then, the animals were randomly assigned into 3 groups (n=8). Control, GLN (0.75 g/kg) and Ala-GLN (0.75 g/kg). All groups administrated orally 24 and 6 hr before flap elevation and continued repeatedly daily until 7 days postoperation. The flap survival rate and vascular density using histological analysis were evaluated. Vascular endothelial growth factor (VEGF) by immunohistochemical method was determined.Results: Seven days after surgery, the mean surviving area in the GLN and Ala-GLN groups were significantly greater than in the untreated control group (

    Nanofibrillated Cellulose from Appalachian Hardwoods Logging Residues as Template for Antimicrobial Copper

    Get PDF
    TEMPO nanofibrillated cellulose (TNFC) from two underutilized Appalachian hardwoods, Northern red oak (Quercus rubra) and yellow poplar (Liriodendron tulipifera), was prepared to determine its feasibility to be used as template for antimicrobial metallic copper particles. In addition, a comparison of the TNFC from the two species in terms of their morphological, chemical, thermal, and mechanical properties was also performed. The woody biomass was provided in the form of logging residue from Preston County, West Virginia. A traditional kraft process was used to produce the pulp followed by a five-stage bleaching. Bleached pulps were then subjected to a TEMPO oxidation process using the TEMPO/NaBr/NaClO system to facilitate the final mechanical fibrillation process and surface incorporation of metallic copper. The final TNFC diameters for red oak and yellow poplar presented similar dimensions, 3.8±0.74 nm and 3.6±0.85 nm, respectively. The TNFC films fabricated from both species exhibited no statistical differences in both Young’s modulus and the final strength properties. Likely, after the TEMPO oxidation process both species exhibited similar carboxyl group content, of approximately 0.8 mmol/g, and both species demonstrated excellent capability to incorporate antimicrobial copper on their surfaces

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Composition and Application Potentials of Scandinavian Tunicates

    No full text
    Marine ecosystems can be a promising reservoir of various kinds of chemical components, applicable as pharmaceutical materials, food, cosmetics, nutraceuticals, and others for different industry. As an example, Tunicates, a group of marine animals, have been attracted a lot of attention in medical application, food market, water pollution issues, and Cellulose nanomaterial production due to their consisting of chemical compounds such as cellulose, amino-sugars, and proteins or protein-polysaccharide complexes e.g. collagen, glycosaminoglycan, chitin, scleroprotein, iodine-binding proteins, and elastin. In this project,  two dominant species of Scandinavian Tunicates, i.e. Ciona intestinalis and Clavelina lepadiformis, harvested from Norwegian ocean have been classified according to body sizes, depths from the ocean surface, ages and species, and separated physically into outer layer and internal organs, followed by measurements of sugar composition, oil content, and  protein content. Application potentials have been investigated by trials for production of pure crystalline cellulose, bioethanol, and biodiesel, and by analysis of amino acid composition of the samples. The cellulose percentage and cellulose yield for the chemically pure cellulose obtained, is around 96% and 54% respectively, and the protein content is decreased step by step by the acid, alkali, and bleaching process applied. Bioethanol can be obtained by fermentation of tunicate hydrolysate with strains A and C which are derived from Saccharomyces cerevisiae. The biodiesel yield of tunicate samples is around 4-6% as an average. The amino acid compositions in our tunicate samples are similar to egg albumin, implying tunicate being an alternative material for animal feed production. Several processing treatments have been conducted with the aims to fractionate tunicate biomass components or enhance the cellulose accessibility and reactivity. After a single processing step, Ba(OH)2 treated samples seemed to be the best in terms of both cellulose preservation (66.5% cellulose) and protein removal (6% protein in the treated residue). Results from the physical separation plus washing reveal that the highest amount of cellulose and protein presents is found in the outer (Tunic) part and internal organs of Tunicate samples respectively. Data obtained from FTIR(Fourier Transform Infrared Spectroscopy) and SEM(Scanning Electron Microscope) indicate that among all processing trials, H3PO4 is the most effective in decreasing the cellulose crystallinity, which renders a higher accessibility for acidic or enzymatic reaction during bioethanol production due to a higher amount of amorphous structure of cellulose. From the analysis results of component contents and structures, it could be concluded that increase of deepness results in a decrease of sugar content of the Tunicate samples while there are no differences in protein and carbohydrate content in different tunicate species. The body size has a positive influence on the protein content and the sample age alters the contents of both sugar and protein. In addition, Tunicate oil has high phospholipid content instead of glycerol ester, the latter being the common oil from vegetable origins. Moreover, lots of free fatty acid is present, and the composition profile of Tunicate fatty acids seems to be similar to fish oil, as revealed by NMR (Nuclear Magnetic Resonance Spectroscopy), FTIR, and GC-MS (Gas Chromatography-Mass Spectrometry)

    Composition and Application Potentials of Scandinavian Tunicates

    No full text
    Marine ecosystems can be a promising reservoir of various kinds of chemical components, applicable as pharmaceutical materials, food, cosmetics, nutraceuticals, and others for different industry. As an example, Tunicates, a group of marine animals, have been attracted a lot of attention in medical application, food market, water pollution issues, and Cellulose nanomaterial production due to their consisting of chemical compounds such as cellulose, amino-sugars, and proteins or protein-polysaccharide complexes e.g. collagen, glycosaminoglycan, chitin, scleroprotein, iodine-binding proteins, and elastin. In this project,  two dominant species of Scandinavian Tunicates, i.e. Ciona intestinalis and Clavelina lepadiformis, harvested from Norwegian ocean have been classified according to body sizes, depths from the ocean surface, ages and species, and separated physically into outer layer and internal organs, followed by measurements of sugar composition, oil content, and  protein content. Application potentials have been investigated by trials for production of pure crystalline cellulose, bioethanol, and biodiesel, and by analysis of amino acid composition of the samples. The cellulose percentage and cellulose yield for the chemically pure cellulose obtained, is around 96% and 54% respectively, and the protein content is decreased step by step by the acid, alkali, and bleaching process applied. Bioethanol can be obtained by fermentation of tunicate hydrolysate with strains A and C which are derived from Saccharomyces cerevisiae. The biodiesel yield of tunicate samples is around 4-6% as an average. The amino acid compositions in our tunicate samples are similar to egg albumin, implying tunicate being an alternative material for animal feed production. Several processing treatments have been conducted with the aims to fractionate tunicate biomass components or enhance the cellulose accessibility and reactivity. After a single processing step, Ba(OH)2 treated samples seemed to be the best in terms of both cellulose preservation (66.5% cellulose) and protein removal (6% protein in the treated residue). Results from the physical separation plus washing reveal that the highest amount of cellulose and protein presents is found in the outer (Tunic) part and internal organs of Tunicate samples respectively. Data obtained from FTIR(Fourier Transform Infrared Spectroscopy) and SEM(Scanning Electron Microscope) indicate that among all processing trials, H3PO4 is the most effective in decreasing the cellulose crystallinity, which renders a higher accessibility for acidic or enzymatic reaction during bioethanol production due to a higher amount of amorphous structure of cellulose. From the analysis results of component contents and structures, it could be concluded that increase of deepness results in a decrease of sugar content of the Tunicate samples while there are no differences in protein and carbohydrate content in different tunicate species. The body size has a positive influence on the protein content and the sample age alters the contents of both sugar and protein. In addition, Tunicate oil has high phospholipid content instead of glycerol ester, the latter being the common oil from vegetable origins. Moreover, lots of free fatty acid is present, and the composition profile of Tunicate fatty acids seems to be similar to fish oil, as revealed by NMR (Nuclear Magnetic Resonance Spectroscopy), FTIR, and GC-MS (Gas Chromatography-Mass Spectrometry)

    Essential role of structure, architecture, and intermolecular interactions of asphaltene molecules on properties (self-association and surface activity)

    No full text
    One of the important challenges of the oil industry is the formation of asphaltene deposits and emulsions, which cause many operational and economic problems. Asphaltenes are heavy and polar fractions of petroleum with a mixture of diverse molecules. Their structural complexity makes the understanding of their properties puzzling. The purpose of this review is to understand the self-association and surface activity properties of asphaltenes. There are some popular models for the mechanism of asphaltene aggregation; each alone is not complete and without defects. Experimental studies and molecular dynamics demonstrate that the mechanism of aggregation is influenced by asphaltene’ structure, architecture, and intermolecular forces. Factors such as oil composition, temperature, and pressure affect its intensity. In this article, these issues and their impact on the self-assembly of asphaltenes and ways to prevent it, especially chemical inhibitors, have been discussed in detail

    Investigation of factors affecting on viscosity reduction of sludge from Iranian crude oil storage tanks

    No full text
    Abstract Crude oil is a kind of water/oil emulsion, which the oil phase consists of organic molecules with different molecular weights such as alkanes, paraffin, asphaltene, and resins. Due to the change in physicochemical conditions during the production, transportation, storage, and refining, heavier molecules can precipitate from crude oil. Thus, viscous sludge formed at the bottom of storage tanks can cause many problems including reduction of storage capacity of tank, oil contamination, corrosion, repair costs, environmental pollution, etc. The reduction of sludge viscosity can be achieved by reduction of its interfacial tension. In this study, different chemical and physical factors, influencing prepared emulsions (made of sludge, water and surfactant), such as surfactants, solvents, temperature, pressure, and mixing conditions were investigated. Results showed that non-ionic surfactants (like bitumen emulsifier), and solvents (such as mixed xylene, AW-400, and AW-402), injection of additives, applying pressure, and mixing operations had a positive effect on reduction of emulsion viscosity. All experiments were carried out with sludge obtained from crude oil storage tanks at Kharg Island, Iran

    The effect of in vitro consecutive passages and culture medium on the genetic variations in BCG Pasteur 1173P2 vaccine.

    No full text
    Since the introduction of the Bacillus Calmette-Guérin (BCG) vaccine, the genomes of vaccine strains have undergone variations due to repeated passages in different laboratories and vaccine production facilities. Genetic variations have been considered as one of the effective factors in the BCG variable protective efficacy. Consecutive subcultures have been shown to play an essential role in causing genetic variations in several microorganisms, including Mycobacterium bovis BCG. Therefore, the world health organization (WHO) recommendation to limit the passages of master seed lot in the BCG vaccine production should be considered. Besides, the role of other external variables such as quality of the raw ingredients of the culture media, the type of the culture medium and the cultivation methods in the vaccine production has been poorly studied. Here, the effect of passages and culture medium on genetic variations in a BCG seed lot was investigated during a year. The findings of this study revealed a total of 19 variants compared to seed lot while the passages were more than the number recommended by WHO. The first culture of seed lot in the Sauton broth and Middlebrook 7H9 media, and the last subculture in Sauton broth had the least and the most variants, respectively. The observation of the higher number of variants in the last cultures on Sauton broth and Middlebrook 7H9 in comparison to the first and the middle cultures may indicate the effect of passages on the genetic variations in BCG. Additionally, more variants in BCG grown in the Sauton broth do not necessarily represent the greater ability of this medium to cause genetic mutations. For a better conclusion, it is required to examine the medium components as independent variables
    corecore