3 research outputs found

    SLAM in Dynamic Environments: A Deep Learning Approach for Moving Object Tracking Using ML-RANSAC Algorithm

    No full text
    The important problem of Simultaneous Localization and Mapping (SLAM) in dynamic environments is less studied than the counterpart problem in static settings. In this paper, we present a solution for the feature-based SLAM problem in dynamic environments. We propose an algorithm that integrates SLAM with multi-target tracking (SLAMMTT) using a robust feature-tracking algorithm for dynamic environments. A novel implementation of RANdomSAmple Consensus (RANSAC) method referred to as multilevel-RANSAC (ML-RANSAC) within the Extended Kalman Filter (EKF) framework is applied for multi-target tracking (MTT). We also apply machine learning to detect features from the input data and to distinguish moving from stationary objects. The data stream from LIDAR and vision sensors are fused in real-time to detect objects and depth information. A practical experiment is designed to verify the performance of the algorithm in a dynamic environment. The unique feature of this algorithm is its ability to maintain tracking of features even when the observations are intermittent whereby many reported algorithms fail in such situations. Experimental validation indicates that the algorithm is able to perform consistent estimates in a fast and robust manner suggesting its feasibility for real-time applications

    Robust Adaptive Fuzzy Fractional Control for Nonlinear Chaotic Systems with Uncertainties

    Get PDF
    The control of nonlinear chaotic systems with uncertainties is a challenging problem that has attracted the attention of researchers in recent years. In this paper, we propose a robust adaptive fuzzy fractional control strategy for stabilizing nonlinear chaotic systems with uncertainties. The proposed strategy combined a fuzzy logic controller with fractional-order calculus to accurately model the system’s behavior and adapt to uncertainties in real-time. The proposed controller was based on a supervised sliding mode controller and an optimal robust adaptive fractional PID controller subjected to fuzzy rules. The stability of the closed-loop system was guaranteed using Lyapunov theory. To evaluate the performance of the proposed controller, we applied it to the Duffing–Holmes oscillator. Simulation results demonstrated that the proposed control method outperformed a recently introduced controller in the literature. The response of the system was significantly improved, highlighting the effectiveness and robustness of the proposed approach. The presented results provide strong evidence of the potential of the proposed strategy in a range of applications involving nonlinear chaotic systems with uncertainties
    corecore