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Abstract: The control of nonlinear chaotic systems with uncertainties is a challenging problem that
has attracted the attention of researchers in recent years. In this paper, we propose a robust adaptive
fuzzy fractional control strategy for stabilizing nonlinear chaotic systems with uncertainties. The
proposed strategy combined a fuzzy logic controller with fractional-order calculus to accurately
model the system’s behavior and adapt to uncertainties in real-time. The proposed controller
was based on a supervised sliding mode controller and an optimal robust adaptive fractional PID
controller subjected to fuzzy rules. The stability of the closed-loop system was guaranteed using
Lyapunov theory. To evaluate the performance of the proposed controller, we applied it to the
Duffing–Holmes oscillator. Simulation results demonstrated that the proposed control method
outperformed a recently introduced controller in the literature. The response of the system was
significantly improved, highlighting the effectiveness and robustness of the proposed approach. The
presented results provide strong evidence of the potential of the proposed strategy in a range of
applications involving nonlinear chaotic systems with uncertainties.

Keywords: adaptive robust controller; fractional controller; sliding mode; fuzzy rules; Duffing–Holmes
oscillator; uncertainties

1. Introduction

The control of nonlinear chaotic systems with uncertainties is a challenging problem
that has attracted significant research attention due to its wide range of applications in
areas such as robotics, finance, and telecommunications. Nonlinear chaotic systems exhibit
complex behaviors, including sensitivity to initial conditions, long-term unpredictability,
and irregular oscillations. These behaviors make it difficult to design a robust and effective
control strategy that can ensure the stability and performance of the system. A literature
review revealed the extensive employment of various control methods for the stabilization
and synchronization of chaos in nonlinear dynamics such as fractional-order PID control [1],
adaptive control [2], adaptive H∞ control [3], fuzzy adaptive control [4], sliding mode
control (SMC) [5], and adaptive back-stepping control [6]. In recent years, several control
strategies have been proposed to address this challenge, including fuzzy logic controllers,
fractional-order calculus, and SMCs.

The SMC methodology can be implemented as a robust supervisory controller to
provide necessary and sufficient control inputs when required. It has been effectively
applied to various research fields due to its fundamental properties, such as robustness
and accuracy against model parametric uncertainties. For example, Zhang [7] proposed
time-dependent switching rules for an uncertain switched system using robust integral
SMC. This method was based on a recursive searching method for the common Lyapunov
function and a robust integral-type sliding mode surface design. The proposed method
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was shown to be effective in simulations and improved the system’s robustness and anti-
disturbance performance from the initial time. However, the effectiveness of the proposed
method depended on the accuracy of the system model and parameter design. Furthermore,
Pradhan and Das [8] investigated a robust H∞ sliding mode scheme for the load frequency
control of time-delay interconnected power systems (IPSs) with actuator saturation and
wind power integration. The proposed controller incorporated an artificial delay and was
shown to effectively reduce frequency deviation in the IPS. A robust adaptive dynamic
sliding mode approach was proposed by Hu and Wang [9] to control an automobile
engine’s electronic throttle system. This proposed control scheme combined the advantages
of adaptive sliding mode control and conventional robust controllers, and exhibited high
tracking precision and robustness. The chattering phenomenon of the conventional sliding
mode was significantly alleviated, and the stability proof of the closed-loop control system
was presented by combining the observer dynamics with the feedback control system.
Moreover, Ye and Wang [10] recommended robust adaptive integral terminal SMC in
combination with an extreme learning machine (ELM) approach for the tracking control of
a steer-by-wire system with uncertain dynamics. The proposed control ensured finite-time
error convergence and estimated lumped uncertainty, reducing control chattering and
simplifying selection of the switching gain. The ELM used for the estimation of the lumped
uncertainty was regarded as an essential component of the closed-loop control and did
not require any training process; the output weights were adaptively adjusted in reference
to Lyapunov theory to ensure the global stability of the closed-loop control. Additionally,
Zhou et al. [11] proposed an adaptive robust control scheme based on SMC and subjected
to a nonlinear disturbance observer that can effectively solve challenges arising from
parametric uncertainties and unknown time-varying external disturbances. The proposed
controller handled the challenges of model uncertainty and unknown time-varying external
disturbances. Van and Do [12] improved a robust fault-tolerant controller for a class of
second-order uncertain nonlinear systems. The authors combined a sliding surface, a
continuous control law, and an adaptive law to approximate unknown system dynamics.
The crucial parameters of the controller were optimally selected using the Bat algorithm.
The proposed approach provided several advantages, such as strong robustness, fast
convergence, low steady-state error, and chattering-free [12]. A novel optimal robust fuzzy
adaptive integral SMC model was designed via a multi-objective grey wolf optimization
algorithm to stabilize a nonlinear uncertain chaotic system; its performance was evaluated
using the Duffing–Holmes oscillator as a case study [13]. The designed controller stabilized
the system errors using integral sliding surfaces and a sliding mode stabilizer where the
design gains of the integral SMC were adapted using the gradient descent approach, and
fuzzy logic systems were used to regulate the coefficients of the proposed robust control
approach. Finally, a hybrid robust adaptive SMC was proposed in [14] that combines
different control strategies for partially known plants. The controller was shown to be
globally stable and robust through Lyapunov stability analysis and numerical simulations.
The proposed methodology is feasible for regulating partially modeled plants and can be
extended to multiple steps ahead. However, the increase in the number of parameters to be
identified may affect the assumptions of the model and the performance of the controller.

Recently, researchers have focused on the adaptive tuning of feedback control pa-
rameters. For instance, Chiang and Lin [15] investigated an adaptive fuzzy controller
with self-tuning fuzzy sliding-mode compensation for hydraulic-pump-controlled servo
systems. Kim [16] modeled a cascade output voltage control law based on the self-tuning
adaptive inner and outer-loop controllers for a nonlinear converter. Tavakoli and Seifi [17]
proposed an adaptive self-tuning proportional–integral–derivative fuzzy SMC model with
a switching surface to suppress the oscillations of power systems. Roman et al. [18] opti-
mally tuned the parameters of a dynamic linearization-PD Takagi–Sugeno fuzzy algorithm
in a model-free manner via virtual reference feedback tuning. Furthermore, Scheinker
et al. [19] presented an adaptive model tuning approach based on real-time accelerators
to continuously predict the longitudinal phase space of electron beams. The adaptive



Fractal Fract. 2023, 7, 484 3 of 19

tuning of feedback control parameters can bring several benefits to a control system, such
as improved performance by adjusting the parameters in real time, increased robustness to
disturbances and parameter uncertainties, and reduced tuning time compared with manual
methods, leading to more accurate control. However, this approach also presents some
challenges, such as increased complexity and computational resources, model dependency
that can cause poor performance or instability if the model is inaccurate, implementation
challenges that require specialized hardware and software, and the risk of oscillations if the
tuning is inadequate.

Moreover, of great importance for researchers in control theories is studying and
developing fuzzy-logic-based systems with continuous values between 0 and 1 for false
and true variables. Due to its unique advantages, these systems have been extensively
utilized in a broad range of subjects. To name but a few, Borges et al. [20] developed a
prototype for feeding solids and controlled it through fuzzy systems. The use of a fuzzy
controller provided better results than an On–Off control for different feeding profiles.
Fuzzy controllers had advantages over conventional PI and PID controllers in their study,
as fuzzy controllers could deal with non-linear control functions and were easier to im-
plement [20]. To attain a hybrid intelligent converter, a genetic-fuzzy control method was
applied to an active free-piston Stirling engine by Masoumi et al. [21]. A fuzzy PID control
scheme was proposed by Jin et al. [22] to improve the accuracy of the transplanting manip-
ulator in the displacement tracking of a picking-up system. The authors designed a fuzzy
PID controller to adjust PID parameters online. The control effects of conventional PID
control and fuzzy PID control were compared, and it was found that the fuzzy PID control
improved the stability and dynamic performance of the system, with a faster response
time and no vibration compared with traditional PID control. The fuzzy tracking control
of a class of uncertain linear dynamical systems was investigated in a study by Abbasi
and Jalali [23]. These authors proposed two fuzzy control laws for the fuzzy tracking
control problem of uncertain linear dynamical systems expressed as fuzzy differential
equations. The first control law was in the form of a fuzzy state feedback with fuzzy gains
and an additional pre-compensator term, while the second control law incorporated a
granular integral pre-compensator to achieve disturbance rejection. The effectiveness of
the proposed approaches was demonstrated through examples of two tanks in a series
system and a landing jet aircraft. However, their paper suggested that future work should
consider a combination of robust techniques and fuzzy control [23]. The simultaneous
control of the surge speed and heading angle of a sailboat was investigated by Deng
et al. [24]. Event-triggered composite adaptive fuzzy laws were developed to solve this
problem. In addition, Nejadkourki and Mahmoodabadi [25] developed a fuzzy adaptive
state-feedback control scheme for a revolute–prismatic–revolute (RPR) robot manipulator.
Fuzzy-logic-based control theories offer several advantages for nonlinear chaotic systems.
One of the main pros is that fuzzy logic controllers can handle complex nonlinear dynamics,
which are difficult to model mathematically. Additionally, fuzzy logic controllers can
demonstrate robust performance in the presence of uncertainties and disturbances. They
can also be designed and implemented with relatively simple and intuitive rules, making
them easier to understand and tune compared with other control methods. However, one
of the drawbacks of fuzzy-logic-based control is that it can be difficult to design an optimal
rule base, especially for highly nonlinear systems. Moreover, fuzzy-logic-based controllers
may have limited performance when dealing with systems that have high-dimensional
state spaces or rapidly changing dynamics. Finally, the interpretability of the control laws
may be limited, which can make it difficult to understand the underlying mechanisms of
the controller.

On the other hand, fractional calculus, as an incipient field in mathematics, has been
extensively used in many branches of physics and engineering sciences, such as control
systems [26–30], dynamical systems [31], viscoelastic materials [32–34], signal and image
processing [35], diffusion wave [36], biomedical applications [37], stochastic and chaotic
systems [38], and heat systems [39]. However, most studies published in the last three
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decades have concentrated on the fractional PID controller [40–42]. In recent years, there
has been growing interest in controlling uncertain fractional-order nonlinear systems. A
fractional adaptive backstepping control method was proposed in [43], which had the ad-
vantage of addressing the complexity issue of the common backstepping method by using a
fractional command filter and the Szász–Mirakyan operator as a universal approximator. In
addition, this method incorporated an efficient robust control term to handle approximation
errors and unknown disturbances. In [44], the researchers proposed a compound adaptive
fuzzy backstepping control strategy to synchronize two uncertain fractional-order chaotic
systems with external disturbances. The approach incorporated a fuzzy logic system, a
disturbance observer, fractional-order command filters, and error compensation signals to
overcome the “explosion of complexity” issue and achieve satisfactory synchronization.
Overall, fractional-order controllers provide a more flexible and accurate control approach
by considering the non-integer order derivatives of the error signal. The fractional-order
PID controller can adjust the proportional, integral, and derivative gains, as well as the
fractional orders, to achieve optimal control performance [26]. However, the implemen-
tation of fractional-order controllers requires more computational effort. The tuning of
the fractional-order controller parameters is also a challenging task, as the selection of the
fractional orders is based on trial-and-error methods, which can be time-consuming and
lead to suboptimal control performance.

Robust adaptive control is a control strategy that aims to tackle the problem of un-
certainty in a system. This becomes especially important in nonlinear chaotic systems
where external disturbances, parameter variations, and unmodeled dynamics can lead to
significant uncertainty. Fuzzy control is a specific type of control strategy that employs
fuzzy logic to map input variables to output variables. Fractional PID controllers, which
introduce two additional fractional exponential terms of integral and derivative, have
emerged as a popular alternative to conventional PID controllers. They provide better
performance in terms of rise time, settling time, overshoot, and steady-state error while
retaining a similar simple structure [45]. Additionally, the fractional terms enhance the
controller’s flexibility, making it more robust and suitable for use in various engineering
fields. In this paper, we propose a new control strategy called the Robust Adaptive Fuzzy
Fractional PID (RAFFPID) controller, which combines the strengths of fuzzy logic con-
trollers, fractional-order calculus, and SMCs to stabilize nonlinear chaotic systems with
uncertainties. The proposed control strategy consists of two stages: a robust control stage
for controlling chaotic behavior, and an adaptive fuzzy control stage for adapting the
system to uncertainties. The Duffing–Holmes oscillator is used to evaluate the performance
of the proposed controller. The Duffing–Holmes oscillator is a non-linear oscillator that
is commonly used as a mathematical model for a wide range of phenomena in physics,
engineering, and biology. The Duffing–Holmes oscillator is described by a second-order
differential equation that includes a cubic nonlinearity; its behavior can be chaotic under
certain conditions. The oscillator is often used as a test system for studying nonlinear dy-
namics and chaos theory, and it has applications in fields such as mechanical engineering,
electronic circuit design, and neuroscience. This study shows the potential of the proposed
approach for a range of applications involving nonlinear chaotic systems with uncertainties.
The proposed control approach was further investigated through numerical simulation
results by comprehensive comparisons with the literature to demonstrate its performance,
effectiveness, and robustness.

In summary, the advantages of the proposed RAFFPID controller over the existing
methods include the integration of multiple control strategies, robustness to uncertainties,
adaptive tuning, multi-objective optimization, and improved performance compared with
existing methods. These advantages make the proposed approach a promising solution
for stabilizing nonlinear chaotic systems with uncertainties in various applications. The
contributions of this research can be summarized as follows:

1. Proposed the RAFFPID controller, a novel control strategy that combines fuzzy logic
controllers, fractional-order calculus, and sliding mode control to effectively stabilize
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nonlinear chaotic systems with uncertainties while accurately modeling the system’s
behavior and adapting in real time.

2. Conducted a multi-objective optimization process to tune the controller parameters
and balance the state errors of the system and its control input.

3. Evaluated the performance of the proposed controller on the Duffing–Holmes oscilla-
tor, a benchmark system that includes external uncertainties, and demonstrated that
the proposed method outperforms a recently introduced controller in the literature.

To this end, the rest of this paper is organized as follows. Section 2 presents the theory
and formulation of the proposed work. Section 3 provides the simulation results and
the application of the introduced controller on uncertain chaotic systems, including the
Duffing–Holmes oscillator. Finally, Section 4 concludes the paper.

2. Theory and Formulations of the Proposed Study

In this study, a class of nonlinear systems is considered by the following equations:

.
x1(t) = x2(t).

x2(t) = f (χ, t) + g(χ, t) + D(t) + u(t)
(1)

where the state vector of the system is represented by χ = [x1, x2]
T . The system dynamics

and uncertainties are expressed by unknown bounded nonlinear functions f (χ, t) and
g(χ, t), respectively. D(t) stands for the external bounded disturbances, and u(t) is the
control signal. The positive constant, α, is considered to limit external disturbances so that
|D(t)| < α. In addition, two upper bounds f u(χ, t) and gu(χ, t) are assumed for system
dynamics and uncertainties so that | f (χ, t)| ≤ f u(χ, t) and |g(χ, t)| ≤ gu(χ, t). Notably,
the superscript “u” stands for “upper bounds” in f u(χ, t) and gu(χ, t).

Furthermore, the error, e, is defined as the difference between the desired input and
the real output. The desired input vector of the system is denoted as Yd =

[
yd,

.
yd
]T in

which Yd is subject to ||Yd ||∞ = supt≥0||Yd(t)|| ≤ ∞ . Moreover, the error vector of the

system can be defined as E = Yd − χ =
[
e,

.
e
]T . Let K = [k1, k2]

T to be chosen such that the
roots of s2 + k2s + k1 = 0 lie on the left-hand side of the complex plane. Then, the feedback
linearization control law can be formulated as follows:

u∗(t) = − f (χ, t)− g(χ, t)− D(t) +
..
yd + KTE. (2)

However, the control approach proposed in this paper combines a fractional-order PID
controller with a supervised controller to enhance its performance. The resulting control
signal for the considered second-order chaotic uncertain system is formulated as follows:

u(t) = uFOPID(t) + us(t), (3)

where uFOPID is the fractional-order PID compensator, and us stands for the supervisory
control term. The structure of the proposed controller can be summarized as the four stages
shown in Figure 1.

2.1. Fractional-Order PID Control

A fractional PID controller is an extension of the classical proportional integral deriva-
tive stabilizers based on fractional-order calculus. To implement this type of controller,
five parameters need to be tuned, including the coefficient of proportional, integral,
and derivative terms, in addition to the orders of the fractional integral and deriva-
tive terms. In a simple notation, the fractional PID controller can be represented by the
following equation:

uFOPID(t) = kpe(t) + kiD−λe(t) + kdDµe(t), (4)
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where kp, ki, and kd are the proportional, integral, and derivative constant gains, respec-
tively. Moreover, λ is the order of fractional integration, and µ is the order of fractional
differentiation. The error signal, e(t), is the difference between the desired input, yd(t), and
its actual output, y(t), which can be expressed as follows:

e(t) = yd(t)− y(t). (5)
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2.2. Adaptation Laws

To obtain the adaptation laws for tuning and updating three gains of the fractional
PID controller (kp, ki, and kd), the time derivative of the regulation signal, qr, is defined
as follows.

.
qr =

..
yd + k2

.
e + k1e. (6)

Furthermore, the sliding surface, S, can be obtained via the following equation:

S = x2(t)− qr(t). (7)

When the system settles at the sliding mode, (S = 0), then x2 = qr and

.
x2 =

..
yd + k2

.
e + k1e. (8)

Hence, if k1 and k2 are appropriately assigned, the error tends to zero as time trends
to infinity. To investigate the stability of the system, a proper Lyapunov function can be
defined as follows:

V =
S2

2
. (9)

To guarantee the stability of the system, the time derivative of the Lyapunov function
must be negative definite:

.
V = S

.
S < 0 (10)

Substituting the nonlinear Equation (1) into the time derivative of Equation (7) yields:

.
S =

.
x2(t)−

.
qr(t) = f (χ, t) + g(χ, t) + D(t) + u(t)− .

qr(t). (11)
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By employing Equation (3) and multiplying S by both sides of Equation (11), we have:

S
.
S = S

(
f (χ, t) + g(χ, t) + D(t) + uFOPID(t) + us(t)−

.
qr(t)

)
. (12)

Consequently, the three fractional-order PID coefficients will be updated by employing
the gradient descent approach and the chain differentiation rule as follows:

.
kp = −γ

∂S
.
S

∂kp
= −γ

∂S
.
S

∂uFOPID

∂uFOPID
∂kp

= −γ1Se(t), (13)

.
ki = −γ

∂S
.
S

∂ki
= −γ

∂S
.
S

∂uFOPID

∂uFOPID
∂ki

= −γ2SD−λe(t), (14)

.
kd = −γ

∂S
.
S

∂kd
= −γ

∂S
.
S

∂uFOPID

∂uFOPID
∂kd

= −γ3SDµe(t), (15)

where γ1, γ2, and γ3 denote learning rates.

2.3. Supervisory Controller

The supervisory controller should be designed such that the states of the system
are held around predetermined limited regions. Substituting Equations (2) and (3) into
Equation (1) yields:

.
x2(t) =

..
yd + KTE− (u∗(t)− uFOPID(t)− us(t)). (16)

By applying the error signal e = yd − x1, it can be obtained that:

..
e = −KTE + (u∗(t)− uFOPID(t)− us(t)), (17)

where E and K are chosen as E =
[
e1 e2

]T and K =
[
k1 k2

]T for the considered second-
order nonlinear equation. By defining A and B as follows:

A =

[
0 1
−k1 −k2

]
, (18)

B =
[
0 1

]T . (19)

Equation (17) can be rewritten as:

.
E = AE + B(u∗(t)− uFOPID(t)− us(t)). (20)

The candidate Lyapunov function can be chosen as:

Ve =
1
2

ET PE, (21)

where P as a positive definite symmetric matrix is obtained from the Lyapunov equation
as follows:

AT P + PA = −Q, (22)

and Q is a positive definite symmetric matrix where its components can be determined by
the designer. We define:

VM =
1
2

λmin(P)(Mx − ||Yd ||∞)2, (23)
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where Mx is a pre-specified parameter, VM is a positive constant, and λmin(P) represents
the minimum eigenvalue of P. Notably, if ||χ|| ≥ Mx , then, from (21), we can write:

Ve ≥ 1
2 λmin(P) ||E ||2 ≥ 1

2 λmin(P)( ||χ|| − ||Yd ||)2

≥ 1
2 λmin(P)(Mx − ||Yd ||∞)2 = VM.

(24)

Hence, if Ve < VM, then ||χ|| < Mx . Moreover, by substituting Equations (20) and (21)
into the time differentiation of Ve, the following relation is obtained:

.
Ve =

1
2 ET(AT P + PA

)
E + ET PB(u∗ − uFOPID − us)

= − 1
2 ETQE + ET PB(u∗ − uFOPID − us)

≤ − 1
2 ETQE +

∣∣ET PB
∣∣(|u∗|+ |uFOPID|)− ET PB us.

(25)

Considering bounded functions | f (χ, t)| ≤ f u(χ, t), |g(χ, t)| ≤ gu(χ, t) and |D(t)| ≤ α
in Equation (2) leads to the following relation:

u∗(t) ≤ f u(χ, t) + gu(χ, t) + α +
∣∣ ..yd
∣∣+ ∣∣∣KTE

∣∣∣. (26)

Therefore, to satisfy
.

Ve ≤ 0, the supervisory controller is proposed as follows:

us(t) =
{

0 i f ||χ|| ≤ Mx
sgn
(
ET PB

)(
f u(χ, t) + gu(χ, t) + α +

∣∣ ..yd
∣∣+ ∣∣KTE

∣∣+ |uFOPID(t)|
)
i f ||χ|| ≥ Mx

(27)

If ||χ|| ≥ Mx , then
.

Ve ≤ 0 and Equations (26) and (27) guarantee the stability of the
system.

.
Ve ≤ − 1

2 ETQE +
∣∣ET PB

∣∣(|u∗|+ |uFOPID|)− ET PB us
= − 1

2 ETQE +
∣∣ET PB

∣∣(|u∗|+ |uFOPID| − sgn
(
ET PB

)(
f u + gu + α +

∣∣ ..yd
∣∣+ ∣∣KTE

∣∣− |uFOPID|
))

≤ − 1
2 ETQE ≤ 0.

(28)

It should be noted that the update laws for the proposed controller are designed to
satisfy the Lyapunov function by ensuring that the derivative of the Lyapunov function is
negative semi-definite. As shown in Equation (28), the derivative of the Lyapunov function
depends on the update laws and the input signals, which are bounded according to the
assumptions made in Equation (2). By selecting appropriate design parameters, such as
the gain matrix K and the parameters in the update laws, the stability of the closed-loop
system can be guaranteed. Therefore, the update laws are crucial for the stability analysis,
designed in a way that satisfies (10).

2.4. Fuzzification of the Learning Rates

Fuzzy-logic-based systems have gained widespread use in various real-world applica-
tions due to their ability to transfer expert knowledge into practical systems. However, the
construction of the fuzzy rule base and rule regulation can be a time-consuming and itera-
tive process. In this study, we propose a method to tune the numerical values of learning
rates γ1, γ2, and γ3. Specifically, we utilize the fuzzifier, inference engine, and defuzzi-
fier components with singleton, product, and center average formulations, respectively,
in Equation (29):

γ
f
i =

∑N
j=1 µ

j
A(e )y

j

∑N
j=1 µ

j
A(e )

, i = 1, 2, 3 (29)
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where yj is the center of the output membership functions defined in Table 1, and N = 3
is the number of rules. In addition, input membership functions, µ

j
A(e ), are defined

as follows:

µ1
A(e ) =


1 e < −1
−e − 1 ≤ e ≤ 0

0 e > 0
(30)

µ2
A(e ) =


0 e < −1
e + 1 − 1 ≤ e ≤ 0
−e + 1 0 < e < 1
0 e > 1

(31)

µ3
A(e ) =


0 e < 0

e 0 ≤ e ≤ 1
1 e > 1

(32)

Table 1. Fuzzy rule base for the learning rate parameters.

Antecedents Consequents

e is µ1
A γ

f
i = −1

e is µ2
A γ

f
i = 0

e is µ3
A γ

f
i = +1

The schematic representation of these memberships is illustrated in Figure 2. Finally,
the learning rates can be computed by employing the following equation:

γi = γc
i + γ

p
i γ

f
i , i = 1, 2, 3 (33)

in which γc
i and γ

p
i , as the constant parameters, would be found through the multi-objective

optimization process. This approach streamlines the process of constructing fuzzy-logic-
based systems and enables the automatic tuning of key parameters, leading to more efficient
and accurate systems.
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In summary, to fuzzify the learning rates, input membership functions µ
j
A(e ) are

defined for each of the three learning rates: γ1, γ2, and γ3. The input data, e, are regarded
as these membership functions using Equations (30)–(32). Then, we use the fuzzifier,
inference engine, and defuzzifier components to obtain the fuzzy values of the learning
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rates. Specifically, we employ the singleton, product, and center average formulations to
perform fuzzification, inference, and defuzzification, respectively. These produce three
fuzzy values, γ

f
1 , γ

f
2 , and γ

f
3 , then constant parameters, γc

1, γc
2, and γc

3, and proportional
parameters, γ

p
1 , γ

p
2 , and γ

p
3 , are added to them to obtain the final values of learning rates,

γ1, γ2, and γ3.

3. Simulation and Discussions
3.1. Duffing–Holmes Chaotic Oscillator—Example 1

The Duffing–Holmes chaotic system is chosen to challenge the performance of the
proposed RAFFPID control scheme. The dynamical equations of the considered Duffing–
Holmes system are represented as follows [46]:{ .

x1(t) = x2(t).
x2(t) = x1(t)− 1

4 x2(t)− x3
1(t) +

3
10 cos(t) + g(χ, t) + D(t) + u(t)

(34)

where the uncertainty function g(χ, t) and external disturbance D(t) are defined as follows:

g(χ, t) = 0.1sin(t)
√
(x1(t))

2 + (x2(t))
2 (35)

D(t) = 0.1sin(t) (36)

Hence, the related upper bounds can be defined as follows:

f u = |x1(t)|+ 0.25|x2(t)|+
∣∣∣x3

1(t)
∣∣∣+ 0.3 (37)

gu = 0.1
√

x2
1(t) + x2

2(t) (38)

To implement the multi-objective optimization operation on the Duffing–Holmes
system, objective functions M1 and M2 can be defined by:

M1(µ) =
∫ τ

0
(|e1(t)|+ |e2(t)|)dt, (39)

M2(µ) =
∫ τ

0
|u(t)|dt + maxτ

t=0|u(t)|, (40)

where e1(t) = yd(t) − x1(t) and e2(t) =
.
yd(t) − x2(t) are the differences between the

desired values and actual values, respectively. Furthermore, maxτ
t=0|u(t)| indicates the

maximum absolute value of the control signals from time 0 to τ. The final time, τ, is chosen
as 30 (s) during the simulation process to ensure that the states of the system are converged
to the desired trajectories.

To validate the accuracy of the proposed controller, the performance of the introduced
RAFFPID scheme is compared with that of robust adaptive PID control subject to sliding
modes and fuzzy rules (RAPIDC-S&F) presented in [46]. Herein, a multi-objective opti-
mization approach based on the genetic algorithm is used to find the optimum gains of the
RAFFPID and RAPIDC-S&F controllers. Two sets of the initial conditions are chosen as Set
1: x1(0) = 0.2 and x2(0) = 0.2, and Set 2: x1(0) = 0.5 and x2(0) = −0.7. Representative sets
of the Pareto optimal solutions are plotted in Figures 2 and 3 for the objective functions
defined in Equations (39) and (40) and found by using the two controllers. It is noticeable
that the implementation time is 30 s for the results illustrated in Figures 3 and 4. As shown
in these figures, a significant improvement in the values of the objective functions is repre-
sented by applying the proposed controller. From Figure 3, it can be seen that the minimum
values of the objectives are M1 = 1.015 and M2 = 42.14 for the RAPIDC-S&F [46], while
those are M1 = 0.38 and M2 = 19.19 for the proposed controller. The significant changes in
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the objective values can also be observed in Figure 4 for the initial conditions of Set 2, where
the minimum and maximum values of the objective functions are depicted. The provided
simulation results for Figures 3 and 4 are sufficient to demonstrate the effectiveness of
the proposed controller via a Pareto front comparison. However, adding another initial
value for simulation potentially provides more comprehensive validation of the controller’s
performance under different conditions. Nonetheless, since the comparison is based on a
multi-objective optimization approach, the two chosen initial conditions are representative
of a wide range of operating conditions. In order to demonstrate the precision of the
proposed controller through the graphical representation of the system states, the second
set of initial conditions has been selected.
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To indicate the accuracy of the proposed controller, the states of the system are plotted
in Figures 5 and 6 for trade-off points A: (M1 = 1.009, M2 = 21.02) and B: (M1 = 2.121,
M2 = 68.23) which are shown in Figure 4 and correspond to the RAFFPID and RAPIDC-
S&F, respectively. These graphs are displayed for 10 s to better visualize the variations in
the responses. This comparison of the states of the system clearly depicts that the accuracy
of the time response is significantly improved by applying the proposed controller.
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Figure 7 shows the performance of the proposed controller in terms of reducing the
values of the control effort. The figure illustrates a comparison between the proposed
controller and the control strategy introduced in [46]. The maximum input control of
the proposed controller is 8.3831, while it is 21.3091 for the control method presented
in [46], which shows a significant improvement in reducing the control effort. At the
beginning of the simulation, the control input starts from zero and gradually increases
to reach its maximum value. At around 0.2 s, a sudden decrease in the control inputs
can be observed when the output reaches the set point. This is followed by a period of
oscillation between −1.7 and 1.6, while the output is tracking the desired trajectory. This
indicates that the proposed controller is able to effectively control the system output while
maintaining a smooth control effort. The figure also shows that the control effort of the
proposed controller is smoother compared with the strategy introduced in [46]. The control
input of the proposed controller follows a relatively smooth trajectory, with no sudden
jumps or spikes, while the control input of the strategy introduced in [46] shows several
abrupt changes, which indicates the presence of chattering. Overall, Figure 7 provides
strong evidence that the proposed controller is highly effective in reducing the values of
the control effort, while providing a smoother control input compared with the control
strategy introduced in [46].

Fractal Fract. 2023, 7, 484 13 of 20 
 

 

maximum value. At around 0.2 s, a sudden decrease in the control inputs can be observed 

when the output reaches the set point. This is followed by a period of oscillation between 

−1.7 and 1.6, while the output is tracking the desired trajectory. This indicates that the 

proposed controller is able to effectively control the system output while maintaining a 

smooth control effort. The figure also shows that the control effort of the proposed con-

troller is smoother compared with the strategy introduced in [46]. The control input of the 

proposed controller follows a relatively smooth trajectory, with no sudden jumps or 

spikes, while the control input of the strategy introduced in [46] shows several abrupt 

changes, which indicates the presence of chattering. Overall, Figure 7 provides strong ev-

idence that the proposed controller is highly effective in reducing the values of the control 

effort, while providing a smoother control input compared with the control strategy in-

troduced in [46]. 

 

Figure 7. Comparison of the control inputs obtained by the proposed controller and the RAPIDC-

S&F [46] the initial conditions are chosen as 𝑥1(0) = 0.5 and 𝑥2(0) = −0.7. 

3.2. Duffing–Holmes Chaotic Oscillator—Example 2 

Figure 8 and Figure 9 presented in this context demonstrate the robustness of the 

proposed controller against other input signals, such as square waves. The controller’s 

effectiveness and accuracy are compared with the control method reported in [46]. The 

control parameters used for the square wave input are the same as those obtained for the 

sinusoidal trajectories. In Figure 8, the tracking errors for both controllers are illustrated 

over time. The tracking error is the difference between the desired output signal and the 

actual output signal. It is clear from the figure that the proposed controller (shown in blue) 

outperforms the RAPDC-S&F controller (shown in red) in terms of the tracking error. The 

proposed controller can successfully minimize the tracking error, whereas the RAPDC-

S&F controller has a steady-state error. 

Figure 7. Comparison of the control inputs obtained by the proposed controller and the RAPIDC-
S&F [46] the initial conditions are chosen as x1(0) = 0.5 and x2(0) = −0.7.

3.2. Duffing–Holmes Chaotic Oscillator—Example 2

Figures 8 and 9 presented in this context demonstrate the robustness of the proposed
controller against other input signals, such as square waves. The controller’s effectiveness
and accuracy are compared with the control method reported in [46]. The control param-
eters used for the square wave input are the same as those obtained for the sinusoidal
trajectories. In Figure 8, the tracking errors for both controllers are illustrated over time.
The tracking error is the difference between the desired output signal and the actual output
signal. It is clear from the figure that the proposed controller (shown in blue) outperforms
the RAPDC-S&F controller (shown in red) in terms of the tracking error. The proposed
controller can successfully minimize the tracking error, whereas the RAPDC-S&F controller
has a steady-state error.
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Figure 9. Comparison of the trajectory tracking for state x2(t) for the proposed controller and the
RAPIDC-S&F [46] for the square waves.

Figure 9 displays the control input signals for both controllers. The proposed controller
(shown in blue) again demonstrates its superiority over the RAPDC-S&F controller (shown
in red). The proposed controller provides a smoother control input signal, which is desirable
from a practical implementation standpoint. On the other hand, the control input signal for
the RAPDC-S&F controller is significantly less smooth, with a large degree of oscillation
present. In conclusion, these figures clearly demonstrate the robustness and effectiveness
of the proposed controller against different input signals, such as square waves. The
controller’s ability to minimize tracking error and provide a smoother control input signal
sets it apart from other control methods, such as the RAPDC-S&F controller.
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3.3. Duffing–Holmes Chaotic Oscillator—Example 3

To further validate the accuracy of the proposed controller, we compare its per-
formance with a benchmark study [47]. We consider the Duffing–Holmes system, as
described in [47]:{ .

x1(t) = x2(t).
x2(t) = x1(t)− 0.073 x2(t)− x3

1(t) + 3.97cos(0.68 t) + g(χ, t) + D(t) + 0.1u(t)
(41)

where the uncertainty function g(χ, t) and external disturbance D(t) are defined as follows:

g(χ, t) = 0.2sin(x1) + 2x1x2, (42)

D(t) = 0.5 cos(5π t). (43)

Hence, the related upper bounds can be defined as follows:

f u = |x1(t)|+ 0.073|x2(t)|+
∣∣∣x3

1(t)
∣∣∣+ 3.97, (44)

gu = 0.2(1 + 10|x1x2|). (45)

The objective of this example is to design a controller that can ensure the state tra-
jectories (x1 and x2) of the chaotic system (41) converge to zero within a finite time. Two
objective functions, M1 and M2, defined in Equations (39) and (40), respectively, are still
applicable for implementing multi-objective optimization on this system. Figures 10 and 11
display the states of the system for a duration of 1.5 s to better illustrate the variations
in the responses. The trajectory tracking for the states of the system is also compared
between the proposed controller and the robust adaptive sliding mode control (RASMC)
approach presented in [47]. The initial conditions for the system are set as x1(0) = 1 and
x2(0) = −5. The comparison of the states in the system clearly demonstrates that the
proposed controller significantly improves the accuracy of the time response. In other
words, the trajectories of the states closely follow the desired reference trajectories, which
demonstrates the effectiveness of the proposed controller.
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4. Conclusions

This paper proposes a novel control approach to improve the responses of nonlinear
chaotic systems by using a combination of sliding mode, adaptive, fuzzy, and fractional-
order techniques. The Duffing–Holmes oscillator, a benchmark system including external
uncertainties, was employed to investigate the performance of the proposed controller. A
multi-objective optimization process was performed to tune the parameters and balance
the state errors of the system and its control input. The obtained results confirmed the
effectiveness and accuracy of the proposed approach in handling nonlinear chaotic systems
with uncertainties. Additionally, the proposed controller was compared with the robust
adaptive PID control subject to sliding modes and fuzzy rules (RAPIDC-S&F) [46] and
robust adaptive sliding mode control [47] using a multi-objective optimization approach
based on the genetic algorithm. The simulation results showed that the proposed controller
outperformed the RAPIDC-S&F controller in reducing the values of the objective functions
and providing a smoother control input. Moreover, the proposed controller demonstrated
high effectiveness in reducing the values of the control effort and maintaining a smooth
control input; its robustness was demonstrated against different input signals. Overall, this
study provides strong evidence that the proposed controller is highly accurate and effective
in controlling the system output.

Building upon these achievements, several exciting future research directions emerge.
Firstly, extending the application of the RAFFPID controller to different chaotic systems
with diverse dynamics and characteristics would provide a more comprehensive under-
standing of its effectiveness and generalizability. Secondly, exploring its practical im-
plementation aspects, considering complexity, limitations, and real-time implementation
constraints will ensure its broader applicability in real-world scenarios. Thirdly, considering
the widely recognized effectiveness of the Takagi–Sugeno fuzzy model in approximating
complex nonlinearities, it can be applied as an alternative to the conventional fuzzy model
in the proposed controller presented in this paper. Additionally, investigating alternative
optimization techniques and tuning approaches for the controller parameters could further
enhance its performance, adaptability, and convergence speed. Furthermore, the proposed
control strategy holds great potential for real-world applications in various domains, such
as mechanical engineering, electronic circuit design, neuroscience, and beyond. Validating
its performance on practical systems and evaluating its ability to handle uncertainties
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in real-world settings will contribute to its practicality and highlight its value in solving
control problems in real-world scenarios.
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Abbreviations

Description Notation
External disturbance D
Error vector E
Error signal e
System dynamics f
System dynamics upper bound fu
System uncertainties g
System uncertainties upper Bound gu
Derivative constant gains kd
Integral, constant gains ki
Proportional constant gains kp
Objective function Mi
Number of rules N
Positive definite symmetric matrix P
Positive definite symmetric matrix Q
Regulation signal qr
Time t
Control signal u
Feedback linearization control u*
Fractional-order PID compensator uFOPID
Supervisory control us
Lyapunov function V
Positive Lyapunov function Ve
Pre-specified parameter VM
State vector χ

System states xi
Actual output y
Desired input vector Yd
Desired input yd
External disturbances α

Learning rate γi
Order of fractional integration λ

Minimum eigenvalue of P λmin(P)
Order of fractional differentiation µ

Input membership function µ
j
A

Final time τ
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