18 research outputs found

    Resilience-based decision framework to determine performance targets for the built environment, A

    Get PDF
    2018 Spring.Includes bibliographical references.Current design codes and standards focus on the design of individual facilities. A typical building is designed with the objective of the life safety of occupants. Even performance-based design approaches assess the required physical performance of an individual structure in order to satisfy prescribed criteria for that structure individually. Thus, even these performance objectives are likely not sufficient for a broad view of community-resilience goals. A modern community is made up of highly coupled networks, and disruptions within one or more networks may lead to disruptions to other networks. If a large number of buildings within a community become non-functional for a long time following an event, either because of physical damage or loss of utilities such as electric power and/or water, the consequences may affect other parts of the community such that, eventually, significant socioeconomic losses occur. Therefore, the current approach for designing individual physical components within a community can be reimagined such that it not only takes into account the performance of a component individually after a catastrophic event but also considers the consequences its design has on a community. The main purpose of this dissertation is to develop a methodology that links the performance of components within the built environment to community-level resilience goals by considering the dependencies and cross-dependencies between components and networks. Therefore, ultimately, this methodology enables disaggregation of the community-level objectives into a set of performance targets for the components of the built environment, which leads itself to the needs of policymakers and community leaders in order to make long-term planning decisions for a community

    Minimum Performance Targets for the Built Environment based on Community-Resilience Objectives

    Get PDF
    Disrupted critical infrastructure systems following disasters can result in population outmigration which may subsequently negatively impact a communitys indirect socioeconomic losses over time. In this study, a community was modeled with its interconnected physical-socio-economic attributes and population outmigration was used as a basic proxy community resilience metric. The probability of outmigration for each household was assessed based on the probability that the school-age students, household residents, and employees in the household are affected over a prescribed time period from the occurrence of the hazard to the full restoration of the community. Finally, the potential population outmigration for the community was assessed by aggregating the probability for all the households in the community. Additionally, a prediction model for the number of injuries and fatalities was implemented in the analysis to be served as a community-level life-safety metric. Ultimately, these metrics were combined and utilized to propose a framework for disaggregation of a set of community-level objectives into a set of performance targets for the components of the built environment. Such a model is desirable for policymakers and community leaders in order to make long-term decisions for their community

    Removal of Dye and COD from Textile Wastewater Using AOP (UV/O3, UV/H2O2, O3/H2O2 and UV/H2O2/O3)

    No full text
    Introduction: Textile industry effluent is a complex sewage with chemical and color materials that is discharged into the environment and can cause serious problems. In this way using advanced oxidation methods and finding the best methods for removing color materials is necessary. An experimental method was done on Kashan textile industry effluent in laboratory scale and batch system. Material and Methods: Initially, optimal condition was obtained for O3 and H2O2 and followed by advanced oxidation methods (UV/O3, UV/H2O2, O3/H2O2 and UV/H2O2/O3) in different reaction times and pH on dye removal and COD (chemical oxygen demand) were determined. The results were compared with complex repetition method. Results: The results of this research showed that dye removal impact and COD based on the type of process and reaction time in UV/H2O2/O3 by 30 minute time duration, was the most effective method. UV/H2O2 in 10 minute time duration was the least effective method. COD and color removal, based on the process in UV/H2O2/O3 and pH = 6 was the most effective. The effect of UV/H2O2 and pH = 4 was the least efficient method on dye material removing. Results showed that the treatment time was effective on color removing (P < 0/001) statistically. Conclusion: It can be concluded that UV/H2O2/O3 was the most efficient on color removing process, compared to the others, due to co-incidence presence of strongly numerous oxidants and their aggravating effect through producing active hydroxyl radicals (OH˚)

    A Survey of Dung Beetles Infected with Larval Nematodes with Particular Note on Copris lunaris Beetles as a Vector for Gongylonema sp. in Iran

    No full text
    Dung beetles (family Scarabaeidae) are one of the largest families of beetles worldwide. Due to biological behavior of these arthropods, they are considered to play an important role in the life cycle of some helminths. In the present study, dung beetles collected from cattle pastures in rural areas of Ardabil province, north-west of Iran were examined for infection with larval stages of helminths. According to the results, nematodes of 2 genera were identified including Rhabditis and Gongylonema. The more common species was Rhabditis sp. which was found in 9 species of beetles. Out of 15 different species of dung beetles, Copris lunaris was the only scarabaeid to be found naturally infected with the larval stages of Gongylonema sp. Our new findings introduce C. lunaris as a potential biological vector for transmission of Gongylonema sp. to vertebrates in the surveyed region
    corecore