1,051 research outputs found
An integrated MEWMA-ANN scheme towards balanced monitoring and accurate diagnosis of bivariate process mean shifts
Various artificial neural networks (ANN)-based pattern recognition schemes have been developed for monitoring and diagnosis of bivariate process variation in mean shifts. In comparison with the traditional multivariate statistical process control (MSPC) charts, these advanced schemes generally perform better in identifying process mean shifts and provide more effective information towards diagnosing the root causes. However, it seemly less effective for multivariate quality control (MQC) application due to disadvantages in reference bivariate patterns and imbalanced monitoring performance. To achieve ‘balanced monitoring and accurate diagnosis’, this study proposes an integrated multivariate exponentially weighted moving average (MEWMA)-ANN scheme for two-stages monitoring and diagnosis of some reference bivariate patterns. Raw data and statistical features input representations were applied into training of the Synergistic-ANN recognizer for improving patterns discrimination capability. The proposed scheme has resulted in better monitoring – diagnosis performances with smaller false alarm, quick mean shift detection and higher diagnosis accuracy compared to the basic scheme
Identification of unnatural variation in manufacturing of hard disc drive component
Hard disc drive (HDD) is known as a main device in a computer. In order to produce a high quality HDD, the source of unnatural variation need to be identified and controlled during manufacturing operation. In this research, simulation and modeling approach was utilized for analyzing the statistical process control (SPC) chart patterns of unnatural variation associated to its root cause error. Initially, the computer aided design (CAD) software was used to model a HDD component and to analyze the source of unnatural variation in manufacturing operation. Then, the artificial data streams for SPC were generated mathematically using MATLAB programming. The process started with normal (in-control) condition and can be followed by sudden shifts when there is a disruption of unnatural variation such as loading error, offsetting in cutting tool, and inconsistency in pneumatic pressure. The design parameters of artificial data streams can be manipulated in terms of window size (WS, length of data streams), magnitude of shifts (Sigma, size of unnatural variation), initial point of shifts (IS), and cross correlation (p) for bivariate data. The results indicated that the generation of artificial data streams can be adapted effectively to various condition of unnatural variation. Generally, this research has provided useful methodology for a quality practitioner in identifying the source of unnatural variation based on the SPC chart patterns
Design Methodology of Modular-Ann Pattern Recognizer for Bivariate Quality Control
In quality control, monitoring unnatural variation (UV) in manufacturing process has become more challenging when dealing with two correlated variables (bivariate). The traditional multivariate statistical process control (MSPC) charts are only effective for triggering UV but unable to provide information towards diagnosis. In recent years, a branch of research has been focused on control chart pattern recognition (CCPR) technique. However, findings on the source of UV are still limited to sudden shifts patterns. In this study, a methodology to develop a CCPR scheme was proposed to identify various sources of UV based on shifts, trends, and cyclic patterns. The success factor for the scheme was outlined as a guideline for realizing accurate monitoring-diagnosis in bivariate quality control
Diagnosis of bivariate process variation using an integrated mspc-ann scheme
Monitoring and diagnosis of mean shifts in manufacturing processes become more challenging when involving two or more correlated variables. Unfortunately, most of the existing multivariate statistical process control schemes are only effective in rapid detection but suffer high false alarm. This is referred to as imbalanced performance monitoring. The problem becomes more complicated when dealing with small mean shift particularly in identifying the causable variables. In this research, a scheme that integrated the control charting and pattern recognition technique has been investigated toward improving the quality control (QC) performance. Design considerations involved extensive simulation experiments to select input representation based on raw data and statistical features, recognizer design structure based on individual and Statistical Features-ANN models, and monitoring-diagnosis approach based on single stage and two stages techniques. The study focuses on correlated process mean shifts for cross correlation function, ρ = 0.1, 0.5, 0.9, and mean shift, μ = ± 0.75 ~ 3.00 standard deviations. Among the investigated design, an Integrated Multivariate Exponentially Weighted Moving Average with Artificial Neural Network scheme provides superior performance, namely the Average Run Length for grand average ARL1 = 7.55 ̴ 7.78 ( for out-of-control) and ARL0 = 4λ1.03 (small shifts) and 524.80 (large shifts) in control process and the grand average for recognition accuracy (RA) = λ6.36 ̴ λ8.74. This research has provided a new perspective in realizing balanced monitoring and accurate diagnosis of correlated process mean shifts
Abstraction-Based Outlier Detection for Image Data
© 2021, Springer Nature Switzerland AG. Data plays an important role in all stages of training, and usage of machine learning algorithms. Outliers are the samples in data that are generated by a “different mechanism” and belong to unexpected patterns that do not conform to normal behaviour. Outlier detection techniques try to deal with such undesirable events. There have been exceptional success of deep learning over classical methods in computer vision. In recent years a number of works employed the representation learning ability of deep autoencoders or Generative Adversarial Networks for outlier detection. Basically, methods are based on plugging representation techniques to outlier detection methods or directly reported employing reconstruction error as an outlier score. The error distributions of inliers and outliers may be still significantly overlapped. This could be associated with variation of samples inside the class, or cases with high outliers ratios, etc. In these cases, simply thresholding reconstruction errors may lead to misclassification. Although the produced representation is perhaps effective in representing the common features of the normal data, it is not necessarily effective in distinguishing outliers from inliers. We present a method that is based on constructing new features using convolutional variational autoencoder (VAE) and generate abstraction based on these features. To identify anomaly detection we tested two scenarios: utilizing VAE itself as well as using abstractions to train an additional architecture. Results are presented in the form of AUC-ROC using four benchmark datasets
Ergonomic risk factors associated with muscuslokeletal disorders in computer workstation
Ergonomics Risk Factors (ERFs) at computer works are commonly related to Musculoskeletal Disorders (MSDs) such as repetitive movements, doing work in awkward postures and static postures while prolonged seating at works. The main objective of this study was to investigate the ergonomic risk factors associated with MSDs among employees in computer workstation. In this study, the data were obtained by structured interview using self-reported questionnaire and direct observation. The results show that there is significant association between neck and stress score with musculoskeletal symptoms and among office workers. As a conclusion, by assessing ERFs at workplace, the effectiveness of workplace interventions can be evaluated without waiting for changes in the prevalence of MSDs
Domain Adaptation for Car Accident Detection in Videos
© 2019 IEEE. In this paper, we implement a deep learning model for car accident detection using synthetic videos while adapting the model, using domain adaptation (DA), to real videos from CCTV traffic cameras. The synthetic data are rendered using a video game. The reason to use such data is the lack of real videos of car crashes from CCTV. Though a video game may allow us to generate car crashes in a variety of scenarios, the distinction in synthetic and real videos can negatively affect the model\u27s performance. Accordingly, our aim is three-fold: render numerous synthetic videos having significant variations, train a 3D CNN based deep model on the collected videos, and use DA to adapt the model from synthetic to real videos. Our experimental results, obtained under a variety of experimental setups, demonstrate the feasibility of using our approach for car accident detection in real videos
An improved features selection approach for control chart patterns recognition
Control chart patterns (CCPs) are an essential diagnostic tool for process monitoring using statistical process control (SPC). CCPs are widely used to improve production quality in many engineering applications. The principle is to recognize the state of a process, either a stable process or a deterioration to an unstable process. It is used to significantly narrow the set of possible assignable causes by shortening the diagnostic process to improve the quality. Machine learning techniques have been widely used in CCPs. Artificial neural networks with multilayer perceptron (ANN-MLP) are one of the standard tools used for this purpose. This paper proposes an improved features selection method to select the best features as input representation for control chart patterns recognition. The results demonstrate that the proposed approach can effectively recognize CCPs even for small patterns with a mean shift of less than 1.5 sigma. The dimensional reduction was achieved by employing Relief, correlation, and Fisher algorithms (RCF) for feature selection and (ANN-MLP) as a classifier (RCF-ANN). This study provides an experimental result that compares the performance before and after dimensional reduction
Automated deep bottleneck residual 82-layered architecture with Bayesian optimization for the classification of brain and common maternal fetal ultrasound planes
Despite a worldwide decline in maternal mortality over the past two decades, a significant gap persists between low- and high-income countries, with 94% of maternal mortality concentrated in low and middle-income nations. Ultrasound serves as a prevalent diagnostic tool in prenatal care for monitoring fetal growth and development. Nevertheless, acquiring standard fetal ultrasound planes with accurate anatomical structures proves challenging and time-intensive, even for skilled sonographers. Therefore, for determining common maternal fetuses from ultrasound images, an automated computer-aided diagnostic (CAD) system is required. A new residual bottleneck mechanism-based deep learning architecture has been proposed that includes 82 layers deep. The proposed architecture has added three residual blocks, each including two highway paths and one skip connection. In addition, a convolutional layer has been added of size 3 × 3 before each residual block. In the training process, several hyper parameters have been initialized using Bayesian optimization (BO) rather than manual initialization. Deep features are extracted from the average pooling layer and performed the classification. In the classification process, an increase occurred in the computational time; therefore, we proposed an improved search-based moth flame optimization algorithm for optimal feature selection. The data is then classified using neural network classifiers based on the selected features. The experimental phase involved the analysis of ultrasound images, specifically focusing on fetal brain and common maternal fetal images. The proposed method achieved 78.5% and 79.4% accuracy for brain fetal planes and common maternal fetal planes. Comparison with several pre-trained neural nets and state-of-the-art (SOTA) optimization algorithms shows improved accuracy
- …