981 research outputs found

    How Many Slides? Documented Cytotechnologist Workload

    Get PDF
    (First paragraph) This paper relays workload information obtained as part of an ergonomics survey.1 Data were obtained on the number of slides evaluated daily, workplace setting, hours worked, and demographic information

    Does protein kinase R mediate TNF-α- and ceramide-induced increases in expression and activation of matrix metalloproteinases in articular cartilage by a novel mechanism?

    Get PDF
    We investigated the role of the proinflammatory cytokine TNF-α, the second messenger C(2)-ceramide, and protein kinase R (PKR) in bovine articular cartilage degradation. Bovine articular cartilage explants were stimulated with C(2)-ceramide or TNF-α for 24 hours. To inhibit the activation of PKR, 2-aminopurine was added to duplicate cultures. Matrix metalloproteinase (MMP) expression and activation in the medium were analysed by gelatin zymography, proteoglycan release by the dimethylmethylene blue assay, and cell viability by the Cytotox 96(Ÿ )assay. C(2)-ceramide treatment of cartilage explants resulted in a significant release of both pro- and active MMP-2 into the medium. Small increases were also seen with TNF-α treatment. Incubation of explants with 2-aminopurine before TNF-α or C(2)-ceramide treatment resulted in a marked reduction in expression and activation of both MMP-2 and MMP-9. TNF-α and C(2)-ceramide significantly increased proteoglycan release into the medium, which was also inhibited by cotreatment with 2-aminopurine. A loss of cell viability was observed when explants were treated with TNF-α and C(2)-ceramide, which was found to be regulated by PKR. We have shown that C(2)-ceramide and TNF-α treatment of articular cartilage result in the increased synthesis and activation of MMPs, increased release of proteoglycan, and increased cell death. These effects are abrogated by treatment with the PKR inhibitor 2-aminopurine. Collectively, these results suggest a novel role for PKR in the synthesis and activation of MMPs and support our hypothesis that PKR and its activator, PACT, are implicated in the cartilage degradation that occurs in arthritic disease

    Introductory Physical Education Courses (UGA)

    Get PDF
    This Grants Collection for multiple introductory Physical Education courses was created under a Round Eleven ALG Textbook Transformation Grant. Affordable Learning Georgia Grants Collections are intended to provide faculty with the frameworks to quickly implement or revise the same materials as a Textbook Transformation Grants team, along with the aims and lessons learned from project teams during the implementation process. Documents are in .pdf format, with a separate .docx (Word) version available for download. Each collection contains the following materials: Linked Syllabus Initial Proposal Final Reporthttps://oer.galileo.usg.edu/health-collections/1008/thumbnail.jp

    The Spherical Nucleic Acids mRNA Detection Paradox

    Get PDF
    &lt;p&gt;From the 1950s onwards, our understanding of the formation and intracellular trafficking of membrane vesicles was informed by experiments in which cells were exposed to gold nanoparticles and their uptake and localisation, studied by electron microscopy.&amp;nbsp; In the last decade, building on progress in the synthesis of gold nanoparticles and their controlled functionalisation with a large variety of biomolecules (DNA, peptides, polysaccharides), new applications have been proposed, including the imaging and sensing of intracellular events. Yet, as already demonstrated in the 1950s, uptake of nanoparticles results in confinement within an intracellular vesicle which in principle should preclude sensing of cytosolic events. To study this apparent paradox, we focus on a commercially available nanoparticle probe that detects mRNA through the release of a fluorescently-labelled oligonucleotide (unquenching the fluorescence) in the presence of the target mRNA. Using electron, fluorescence and photothermal microscopy, we show that the probes remain in endocytic compartments and that they do not report on mRNA level. We suggest that the validation of any nanoparticle-based probes for intracellular sensing should include a quantitative and thorough demonstration that the probes can reach the cytosolic compartment.&lt;/p&gt;</ns7:p

    Development and evaluation of the process for final placement application: a review of the new student led allocation system

    Get PDF
    Background A process to facilitate nursing students to have more ownership of their final placement was introduced for this academic year by inviting them to apply for a specific placement they felt most appropriate. Whilst there has been significant research into preparing students for practice (Woods et al, 2015) and to explore the transition from student to graduate nurse (Kumaran and Carney, 2014), there is little to explore the effect of gaining preference for their final placement or for the development of employability skills. Morrell and Ridgway (2014) explored student’s views on their preparedness for final placement finding 8 themes, one of which was ‘Lack of support, and stress’. They suggested a “factor that can inhibit transition include a lack of support from the university with job applications...”. Aim The aim of this study is for students to work within the ‘student as producer’ ethos and evaluate the new process to explore its effectiveness and review the perceived benefits of the students. With this information, they are refining and developing the process for their cohort. It is vital that we are evaluating its outcomes to enable a positive impact on the student experience. Partners are supportive of this project and the possible impact it may have on their recruitment process and rates. The process will help embed graduate attributes into our students which aims to increase their employability including application skills and CV building. With students producing an application form, they are reflecting on their learning and experiences, increasing their awareness of the skills they have gained and articulating this to the placements team. Implementation This project will be implemented by 1. Creating a robust application process that has been trialled, evaluated and developed by students 2. Engaging partners with the process and to help aid the transition to registered nurse 3. Using the results to inform and shape future developments in placement allocation and rolling the process out toi the next cohort. Methods Evaluation is being conducted by distributing a questionnaire (co-designed by students) to the current final year students which is then collated by the students. 3 focus groups or interviews (preference of students) are to be held with 5 people from 3 categories (gained their chosen placement, gained a chosen preference, gained a placement outside of their preferences). These groups will focus on their perceived advantages and disadvantages of the process and suggestions for improvement. Quantitative data (from the applications and questionnaires) is being conducted using SPSS. Qualitative data from the focus groups will be evaluated using the framework methods whereby transcripts are coded and themes identified. Key findings All research and analysing of data in terms of the benefit of this process will be completed and written ready for presenting at the conference. We will have a research paper outlining the findings of the evaluation and perceived benefits including possible future developments

    Exogenous sphingomyelinase increases collagen and sulphated glycosaminoglycan production by primary articular chondrocytes: an in vitro study

    Get PDF
    We previously established a role for the second messenger ceramide in protein kinase R (PKR)-mediated articular cartilage degradation. Ceramide is known to play a dual role in collagen gene regulation, with the effect of ceramide on collagen promoter activity being dependent on its concentration. Treatment of cells with low doses of sphingomyelinase produces small increases in endogenous ceramide. We investigated whether ceramide influences articular chondrocyte matrix homeostasis and, if so, the role of PKR in this process. Bovine articular chondrocytes were stimulated for 7 days with sphingomyelinase to increase endogenous levels of ceramide. To inhibit PKR, 2-aminopurine was added to duplicate cultures. De novo sulphated glycosaminoglycan and collagen synthesis were measured by adding [(35)S]-sulphate and [(3)H]-proline to the media, respectively. Chondrocyte phenotype was investigated using RT-PCR and Western blot analysis. Over 7 days, sphingomyelinase increased the release of newly synthesized sulphated glycosaminoglycan and collagen into the media, whereas inhibition of PKR in sphingomyelinase-treated cells reduced the level of newly synthesized sulphated glycosaminoglycan and collagen. Sphingomyelinase treated chondrocytes expressed col2a1 mRNA, which is indicative of a normal chondrocyte phenotype; however, a significant reduction in type II collagen protein was detected. Therefore, small increments in endogenous ceramide in chondrocytes appear to push the homeostatic balance toward extracellular matrix synthesis but at the expense of the chondrocytic phenotype, which was, in part, mediated by PKR

    AMPA/kainate glutamate receptor antagonists prevent posttraumatic osteoarthritis

    Get PDF
    Musculoskeletal disorders represent the 3rd greatest burden on health in the developed world. Osteoarthritis is the single greatest cause of chronic pain, has no cure, and affects 8.5 and 27 million in the UK and US respectively. Osteoarthritis commonly occurs after joint injury, particularly affecting younger patients. Painful joints are often treated with injections of steroid or hyaluronic acid (HA), but treatments to prevent subsequent joint degeneration remain elusive. In animals, joint injury increases glutamate release into the joint, acting on nerves to cause pain, and joint tissues to cause inflammation and degeneration. This study investigated synovial fluid glutamate concentrations and glutamate receptor (GluR) expression in injured human joints and compared efficacy of GluR antagonists with current treatments in a mouse model of injury-induced osteoarthritis (ACL rupture). GluRs were expressed in ligament and meniscus after knee injury and synovial fluid glutamate concentrations ranged from 19–129 ”M. Intra-articular injection of NBQX (GluR antagonist), administered at the time of injury, substantially reduced swelling and degeneration in the mouse ACL rupture model. HA had no effect and depo-medrone reduced swelling for 1 day, but increased degeneration by 50%. Intra-articular administration of NBQX was both symptom and disease modifying to a greater extent than current treatments. There is an opportunity for repurposing related drugs, developed for CNS disorders, with proven safety in man, to prevent injury-induced osteoarthritis. This could quickly reduce the substantial burden associated with osteoarthritis
    • 

    corecore