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Abstract: 

From the 1950s onwards, our understanding of the formation and intracellular trafficking of 

membrane vesicles was informed by experiments in which cells were exposed to gold 

nanoparticles and their uptake and localisation, studied by electron microscopy.  In the last decade, 

building on progress in the synthesis of gold nanoparticles and their controlled functionalisation 

with a large variety of biomolecules (DNA, peptides, polysaccharides), new applications have been 

proposed, including the imaging and sensing of intracellular events. Yet, as already demonstrated 

in the 1950s, uptake of nanoparticles results in confinement within an intracellular vesicle which in 

principle should preclude sensing of cytosolic events. To study this apparent paradox, we focus on 

a commercially available nanoparticle probe that detects mRNA through the release of a 

fluorescently-labelled oligonucleotide (unquenching the fluorescence) in the presence of the target 

mRNA. Using electron, fluroescence and photothermal microscopy, we show that the probes 

remain in endocytic compartments and that they do not report on mRNA level. We suggest that the 

validation of any nanoparticle-based probes for intracellular sensing should include a quantitative 

and thorough demonstration that the probes can reach the cytosolic compartment. 
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The history of gold nanoparticles as tools for biological research and medical diagnostics starts 

more than a century ago. In 1912, Carl Friedrich August Lange invented a nanoparticle-based test 

to diagnose “dementia paralytica”. The test was based on colour change upon aggregation induced 

by non-specific interactions with proteins from the spinal fluids of patients1. For several decades, 

the test was used in clinics and its existence spurred synthetic efforts towards better nanoparticle 

preparations2. With the development of electron microscopy in the 1940s and 1950s, gold 

nanoparticles became contrast agents of choice due to their high electron density, favourable 

dimensions and relative ease to prepare antibody conjugates. Some of the earliest studies of 

vesicular trafficking used gold colloids as electron microscopy probes. In 1957, Harford et al 

exposed HeLa cells to gold nanoparticles, observed localisation within intracellular vesicles by 

electron microscopy and concluded that their results supported the notion that “membranous 

organelles of the cytoplasm may be derived from the cell membrane”3. Thus, nanoparticles have 

been one of the early tools that biologists have used to decipher the way cells probe their 

environment. They were also used as a proxy to study the entry of biological nanoparticles, i.e. 

viruses, into cells. As early as 1965, it was noted in an elegant side-by-side electron microscopy 

study that while the Herpes viral particles escape endosomes, gold colloids remain in vesicles after 

uptake4. Indeed virions, being under a selective reproductive pressure, have evolved advanced 

means by which to escape their encapsulating vesicle and access the cytosol (for example, 

adenovirus5). Thus, more than five decades of work have clearly established that nanoparticles 

enter cells by endocytotic mechanisms that result in their entrapment inside intracellular vesicles 

unless those nanoparticles are biological in nature and have acquired through evolution, advanced 

molecular tools which enable them to escape. Access to the cytosol remains one of the main 

barriers towards biologics and siRNA therapeutic application6–9. For cell biology experiments, 

access to the cytosol can be gained through disruptive physical means such as electroporation or 

endosomal rupture through the use of osmotic pressure10, liposome carriers or the proton sponge 

effect.11 For purposes such as transfection, it is often acceptable that most particles remain trapped 

in endosomes as long as a few particles per cell reach the cell machinery. 

 

From the first decade of this century, the number of publications reporting the interaction and 

uptake of nanoparticles in cells has exploded, sometimes ignoring the knowledge gained from 

these earlier experiments. The idea that nanoparticles have a special capacity to cross biological 

barriers became pervasive, leading to concerns regarding their toxicity and hopes regarding their 

potential for therapeutic applications. Yet, both the concerns and the hopes appear to rest on 

limited data. The claim that nanoparticles can cross the cell membrane and access the cytosol 

seems to have entered the scientific literature through a 2005 article and a high-profile review 

published in 2006 by Geiser et al12, and by Nel et al13 respectively. The claim was challenged the 

following year by Shayla Banerji and Mark Hayes in an elegant experimental and theoretical study 

which was a direct response to the two papers cited above14. Unfortunately the refutation had a 

limited impact on the field. Thus, nanoparticles were proposed for intracellular sensing within the 

cytosol of live cells (without direct evidence of endosomal escape) including the detection of 

caspase three activity by plasmon rulers15 and the regulation, quantification and imaging of specific 

mRNAs with spherical nucleic acids16. In both cases, the interpretation of the experiments relies on 

the particles being in the correct compartment: retention of the majority of the particles in 

endosomes would lead to incorrect conclusions.   

 

RNA plays a central role in the conversion of DNA into proteins in cells. More than just a genetic 

translator, these highly specialised molecules play an active and highly dynamic role in gene 

expression, promoting silencing, up-regulation or modification of translation. Present studies on 

RNA are largely restricted to fixed or in vitro methods such as Fluorescent in situ Hybridisation 

(FISH), RT-PCR and gel electrophoresis. Fluorescent reporters that could get live, dynamic 



measurements of mRNA within cells or tissues would therefore have an enormous potential to 

improve our understanding of biology. The spherical nucleic acids gold nanoparticles developed by 

the Mirkin lab for detection of mRNA, are commercially available from EMD Merck Millipore under 

the name SmartFlares. The technology relies on the hybridisation of target mRNA strands with 

complementary strands which are covalently linked to a gold nanoparticle. Upon hybridisation a 

fluorescent reporter strand is displaced, and subsequently unquenched when no longer in the 

vicinity of the gold core, providing a readout of mRNA levels. A more recent implementation 

(named StickyFlares) relies on the same technology but inverts the sequences such that the 

fluorescent reporter strand is complementary to the mRNA of interest17. 

 

Given the limited amount of published information on the endosomal escape of spherical nucleic 

acids, we have studied the localisation of their commercially available form, i.e. SmartFlares. We 

have carried this research as an open science project, sharing our data and protocols in quasi-real 

time using an online notebook18 and data repository19. This has allowed us to gather feedback from 

peers including other SmartFlare users and developers. Using high-resolution fluorescence 

microscopy, electron microscopy and photothermal imaging we have found that using the 

manufacturers’ instructions, the SmartFlares are taken up into vesicular compartments in a subset 

of cells. We find that after 16-20 hours, fluorescence is present and remains visible as puncta 

within membrane-contained vesicles. Importantly, the fluorescence levels are independent of the 

presence of the target mRNA. Given these findings, we suggest that the validation of any 

nanoparticle-based probes for intracellular sensing should include a quantitative and thorough 

demonstration that the probes can reach the cytosolic compartment. 

 

  



Materials & Methods: 

 

Materials 

SmartFlare mRNA detection probes were ordered from EMD Merck Millipore. Uptake and 

Scrambled controls were Cy5-labelled while VEGF SmartFlares were Cy3-labelled. SmartFlares 

were re-suspended in 1 mL nuclease free de-ionised water and stored at room temperature 

protected from light according to the manufacturer’s instructions. 

Fluorescein isothiocyanate (FITC)-labelled 10 kDa dextran (from Life Technologies - now 

ThermoFisher Scientific) was re-suspended to 10 mg/mL in phosphate-buffered saline (PBS). 

Dimethyloxaloylglycine (DMOG), Triton X-100 and Bovine Serum Albumin (BSA) were from Sigma 

Aldrich. DMOG stocks were used within 2 months of reconstitution and aliquoting into -20°C. All 

cell culture media was from Gibco (now ThermoFisher Scientific). 

Primary antibodies were ordered from Abcam against LAMP1 (AB24170) and Transferrin Receptor 

(AB84036). Secondary antibodies were ordered from Life Technologies (now ThermoFisher 

Scientific) conjugated with AlexaFluor 488 (A11008), 568 (A11011) or 647 (A21244) as required. 

HeLa cells (ATCC) were grown in 10 cm dishes (Corning) and split into 35 mm glass-bottomed 

dishes (Ibidi) for experiments. 

 

Cell Culture 

HeLa cells were maintained in Dubecco’s Modified Essential Medium (DMEM) growth media 

supplemented with 10% Fetal Bovine Serum (FBS), 1% non-essential amino acids and 1% 

penicillin/streptomycin. Cells were maintained between 20 and 80% confluent at 37°C and 5% CO2. 

 

SmartFlare mRNA detection experiments 

The SmartFlare RNA detection probes were used as directed by the manufacturer. Briefly; ~4x105 

HeLa cells were seeded onto 35mm diameter glass-bottomed imaging dishes and incubated in 

growth media for 6 hours to adhere. Media were pre-mixed by aliquoting (per well) 960 μL of media, 

20 μL of SmartFlare stock solution, 20 μL of fluorescent dextran (10 mg/mL stock). In experiments 

with DMOG, the drug was included at 500nM and the volume of media reduced accordingly to 

compensate. Growth media was replaced with the above mixture and the cells returned to the 

incubator for 18h or as noted. 

 

Quantitation of mRNA using qPCR 

Approximately 1x108 cells were seeded into 6 cm diameter dishes, allowed to adhere for 6 hours 

then treated with or without 500nM DMOG for 18 hours to replicate the SmartFlare experiments. 

Quantitative PCR was then performed as previously described20. Primers used were;  

Cyclophillin A forward: GCTTTGGGTCCAGGAATGG 

Cyclophillin A reverse: GTTGTCCACAGTCAGCAATGGT 

VEGF forward: CTCCACCATGCCAAGTGGTC 

VEGF reverse: GCAGTAGCTGCGCTGATAGA.  

 

Confocal Microscopy 

Fluorescent imaging was conducted at the Centre for Cell Imaging (CCI) in Liverpool using a Zeiss 

LSM510 multiphoton microscope. Where possible, multi-pass dichroic mirrors and filters were used 

to reduce the potential for spatial misalignment. In all experiments, the confocal pinhole was 

adjusted to maintain a similar optical section between channels. For live experiments, incubation 

and CO2 control maintained environmental conditions as in ‘Cell Culture’ above. Unless otherwise 

stated, all fluorescent images are shown without any contrast enhancement. 

 

Electron Microscopy 



Cells were fixed with a solution containing 1% paraformaldehyde and 3% gluteraldehyde in 0.1 M 

cacodylate buffer (pH 7.4). They were stained first with reduced osmium (2% OsO4 + 1.5% 

K4[Fe(CN)6]). This was followed by a second osmium staining (2% OsO4) and a uranyl acetate 

(1%) staining. Samples were then dehydrated in graded ethanol (30%, 50%, 70%, 90% and twice 

100%). Finally, samples were infiltrated with medium TAAB resin 812 and embedded with the same 

resin. The resin was cured for 48 h at 60°C.Ultrathin sections of 350 μm x 350 μm x 74 nm were 

cut and placed in 200 mesh formvar/carbon filmed grids. They were post-stained with uranyl 

acetate and lead citrate before imaging on a Tecnai G3 spirit.  

 

Photothermal Microscopy 

Cells were fixed in 4% PFA for 20 min at room temperature. Subsequently, the cells were washed 

with PBS and immersed under 2 mL of PBS + 0.01% sodium azide for storage at 4°C between 

imaging sessions. 

All images were acquired using a custom photothermal microscope 21 built around the body of a 

Nikon Eclipse Ti-U inverted microscope. Prior to photothermal imaging, the samples were allowed 

to equilibrate fully to room temperature for at least an hour. Fluorescence images were recorded 

using an X-Cite Series 120 light source (now Excelitas Technologies, USA) together with a FITC 

filter set for the Dextran signal and Cy5 filter set for the SmartFlare signal immediately prior to 

photothermal imaging.   

The photothermal excitation laser (523 nm, frequency-doubled Nd:YAG, Ventus Laser Quantum, 

Germany) was tuned to 0.5 mW and modulated at a frequency of 459.5 kHz using an accousto-

optical modulator (Isomet Corporation, UK). The excitation beam was overlaid with a 1.0 mW non-

resonant probe laser (633 nm, JDS Uniphase Corporation, USA) via a cold mirror (ThorLabs, USA). 

The superimposed beams were focused onto the sample via a Zeiss Plan Achromat 63× oil 

immersion objective (numerical aperture: 1.4). The sample was placed on a piezo scanning stage 

(MCL502385, MadCity Labs, USA), which allows the movement of the sample in three dimensions 

over the fixed laser spot. Pixel-by-pixel scanning was facilitated by a piezoelectric stage driver 

(MCL NanoDrive 85, MadCity Labs, USA) controlled through a Nanonis RC4 module and Nanonis 

program (SPECS Zurich, Switzerland). The transmitted and forward scattered light was collected 

via a Zeiss Achroplan 40× water immersion objective (numerical aperture: 0.8) and passed through 

a red-pass filter (ThorLabs, USA) to block the excitation laser. The red component was focused on 

a photodiode of the balanced photo receiver (Model 2107 10 MHz adjustable photo receiver, New 

Focus, USA). A lock-in amplifier (DSP 7260, Signal Recovery, USA) was used to identify the 

scattered component of the probe beam that corresponds to the modulation frequency (i.e. 459.5 

kHz). A Nanonis SC4 Acquisition Module (SPECS Zurich, Switzerland) was used for signal 

acquisition. The signal was averaged and a grayscale pixel value was generated. The pixel-by-

pixel values were then converted into a photothermal image and saved in the Nanonis-native .sxm 

format. 

 

Immunofluorescence 

Cells were treated identically as to the “mRNA detection experiments” above, however instead of 

imaging the samples live, they were washed once in Phosphate Buffered Saline (PBS), then fixed 

in 4% PFA for 20 min at room temperature. Subsequently, samples were washed at least once with 

PBS to remove excess fixative then blocked and permeabilised using 0.1% TritonX-100 plus 1% 

Bovine Serum Albumin (BSA) in PBS for 60 minutes at room temperature. Samples were washing 

three times with PBS. Primary antibodies were diluted in 1% BSA in PBS at 1:500, and added to 

the samples for 60 mins at room temperature. Samples were washed three times for 15 mins each 

in PBS, then secondary antibodies were added at 1:1000 dilution in 1% BSA in PBS for 60 mins at 

room temperature. Cells were washed three times in PBS then imaged immediately or stored 

under 2 mL of PBS + 0.01% sodium azide at 4°C for later imaging. 



 

Data Analysis 

All data analysis was performed using Fiji (available from http://fiji.sc). In Figure 1, estimates of 

particle size were made on calibrated images by thresholding the electron dense particles by 

intensity, followed by the application of a 2D watershed filter to split separating objects. The 

Analyze Particles function was used to report the minimum and maximum Feret diameters of 

particles with an area greater than 100 nm2 with circularity greater than 0.7 (to exclude amorphous 

bunches of particles). For each particle, the mean of the maximum and minimum Feret diameter 

were calculated. The population mean is reported. 

In Figure 3, the change in intensity after DMOG treatment was measured by background 

subtracted raw integrated density for a field of cells and dividing this by the number of cells in the 

field. Within experimental repeats, the data were normalised to an untreated control, and the mean 

of these values were reported. The results of three experiments (each with 8 fields) were analysed 

in this way. A two-tailed heteroscedastic Student’s t-test was used to assess significance (P= 

0.065). 

In Figure 4, the SmartFlare fluorescence channel was compared to a second channel (see Figure 

for details) and analysed using the JaCoP plugin for Fiji,22 for colocalisation using a thresholded 

Manders’ analysis. Reported (yellow number) is the mean of 12 fields (approximately 20 cells per 

field) from two independent experiments (TFN-R & LAMP1) or 24 fields from two separate 

experiments (dextran). Given the non-homogeneous uptake of SmartFlares by cells, the values 

reported are the coefficient relating to the overlap between SmartFlares and the secondary label. 

 

Open Science 

This project has been run as an Open Science project, with results, thoughts, commentary and 

discussion posted at [http://raphazlabcommons.wordpress.com]. The raw data were both managed 

internally and made available, through the OMERO server at the Liverpool Centre for Cell Imaging 

(CCI). We would like to acknowledge the help of the Open Microscopy Environment group 

(University of Dundee), specifically Will Moore, for help with developing our public-facing gallery 

hosted at [http://cci02.liv.ac.uk/gallery]. 

 

Results and discussion 

Characterisation of SmartFlare RNA detection probes 

As an exemplar target, we chose the Vascular Endothelial Growth Factor (VEGF) because it is 

present in all mammalian cells, its regulation is relevant to a range of diseases, and its expression 

level can be manipulated pharmacologically with dimethyloxalylglycine (DMOG).23,24 

 

As gold nanoparticles have a known propensity to aggregate and agglomerate, we sought to first 

characterise the VEGF SmartFlares along with the ‘Uptake Control’. Transmission electron 

microscopy (TEM) showed no apparent aggregation (Figure 1 A & B) of the particles and allowed a 

measurement of the particle diameters (VEGF: 16 nm, SD = 2.34 nm, n = 310 particles; uptake 

control: 14 nm, SD = 1.82 nm, n = 93 particles) which compared well to the expected diameter of 

13 nm. 

 

SmartFlares are taken up into cells 

Following the manufacturers’ instructions, Uptake Control SmartFlares were added to HeLa cells 

and incubated for 18 hours. Live-cell imaging with a laser-scanning confocal microscope revealed 

fluorescent puncta of ~1 μm diameter (Figure 2A and the project’s online data repository at 

[http://cci02.liv.ac.uk/gallery]). Surprisingly, not all cells appeared to internalise the Uptake Control 

SmartFlares, as evidenced by a lack of detectable fluorescent signal in some cells (Figure 2C). 

Both the VEGF and Scrambled SmartFlares showed a very similar punctate distribution within the 



cells. This was unexpected for two main reasons. Firstly, SmartFlares are sold on the basis of 

being able to escape the endosomes in order to interact with RNA in the cytosol25,26. Secondly, in 

order to become fluorescent, the SmartFlares are ostensibly required to interact with target RNA 

molecules, of which we would expect limited amounts within newly formed endocytic vesicles. 

 

SmartFlares remain in vesicles up to 18h 

The punctate distribution seen in Figure 2 could result from aggregation in the cytosol, vesicular 

containment or binding to the surface of cells. In order to examine this at higher resolution, 

SmartFlare-loaded cells were imaged using transmission electron microscopy (TEM). From an 

initial screen of the EM grid studying at least 20 cells, gold particles were only seen to be contained 

within membrane-bound compartments (Figure 3A-B). Some sections did not present any gold 

nanoparticles. 

 

The TEM data show that the SmartFlares are contained within membrane-bound compartments. 

To test whether their fluorescence is nevertheless sensitive to the levels of VEGF mRNA, cells 

were treated with 500 nM DMOG at the time of SmartFlare addition. Previous studies have shown 

DMOG to increase VEGF mRNA levels by 10 fold in different cell types.27 Here, DMOG increased 

VEGF mRNA on average 19 fold (21, 15 and 22 fold in three independent experiments). As shown 

in Figure 3C-E however, 18 hours of DMOG treatment did not affect the intensity of the VEGF 

SmartFlare signal. 

 

To evaluate the respective localisation of the gold core and unquenched fluorescence reporter, we 

combined fluorescence and photothermal microscopy to visualise the gold core and fluorescent 

dye in the same sample. This showed the fluorescent puncta and nanoparticles to be within the 

same compartments (Figure 3F-H). 

  

Characterisation of the SmartFlare-containing vesicles. 

Having confirmed that the SmartFlares were membrane-bound, we set about trying to characterise 

the SmartFlare-containing compartments. There are several ways in which material impermeant to 

the cell membrane can be taken up into cells. Endocytosis is probably the most well studied 

category and is largely driven by receptor-mediated signalling, whereas pinocytic processes are 

considered constitutive and are responsible for fluid-phase (IE receptor independent) uptake. The 

terminal compartment of these processes is the lysosome, a highly nucleolytic and proteolytic 

compartment involved in degradation and in some cells, antigen presentation. 

 

We labelled the endocytic pathway using a fluorescently-labelled 10 kDa dextran, both to show that 

constitutive uptake was occurring in our system, but also to label all of the compartments of the 

pathway. As expected, the dextran labelled every cell in the field with homogeneous intensity 

puncta (Figure 4B). There were approximately the same number of vesicles per cell when 

corrected for cell size. Interestingly, the dextran and SmartFlares showed a Manders’ colocalisation 

coefficient of 0.43 (Figure 4C: see Methods for details). Furthermore, much the same was seen at 

a 2 hour time point (Supplementary Figure 1). 

 

As the dextran may be excluded from receptor-mediated endosomes (by unknown mechanisms) 

we also used immunofluorescence to label the recycling (transferrin-receptor positive) and terminal 

(lysosomal) compartments of the endocytic pathway (Figure 4D-F and G-I respectively). Upon 

analysis, the SmartFlares showed little overlap with either of these compartments (Figure 4C,F,I, 

mean Manders’ coefficient of at least 12 fields from two independent experiments is inset), 

suggesting a parallel but largely non-overlapping compartment. 

 



Conclusions: 

Developing the Green Fluorescent Protein (GFP) into a tool for researchers was a landmark 

achievement across many fields and has opened up the dynamic study of proteins in living cells28.  

There is no doubt that replicating this success in the study of RNA would be equally as momentous. 

Our results however, indicate that SNAs in their present incarnation, cannot be used to report on 

mRNA levels in live cells. Furthermore, we have shown that SNAs are taken up into only a subset 

of cells (which could potentially bias population studies). Once taken up we consistently observe a 

punctate distribution indicating retention within vesicular compartments. This was confirmed by 

electron microscopy and photothermal imaging. Furthermore, the controls (the scrambled and 

constitutively-fluorescent uptake control) showed similar levels of fluorescence. As the fluorophore 

should only be unquenched in the presence of cognate mRNA, which we assume is not present in 

the vesicles, this signal is likely the result of a nucleolytic cleavage of the oligonucleotide strands. 

Indeed the Mirkin group themselves have published a comprehensive study on the vesicular 

retention, localisation and degradation of SNAs, particularly highlighting the role of DNaseII29. 

 

The same study highlights what an effective tool this must be if only a “...small, unquantifiable 

portion of these particles escape the endosome...” (ibid). Even if we accept the possibility of a 

small fraction of these particles being released, unscathed into the cytosol, we still have the issue 

of overcoming background signal. StickyFlares (and presumably by extension, SmartFlares) are 

reported to increase in fluorescence intensity ten times upon un-quenching17, which means that 

even if as many as one in eleven are released, the signal would not be visible over the background 

fluorescence. All of this is ignoring cleavage and unquenching inside of the vesicle, which would 

further increase the background. 

 

These findings leave us with the difficult job of interpreting the existing body of work published 

using these probes. It is likely that publication bias is playing a role: we do not know how many 

laboratories have bought and tried the SmartFlare reagents versus how many have published their 

results. Most of the published SmartFlare data are cytometry results which do not give any 

indication of the cellular localisation of the signal. Interestingly, when imaging data are included 

they show a punctate distribution in cells30–32 although this is not commented upon. There have 

been other cases, most notably that of antisense technology, working but having an effect through 

means other than traditional Watson-Crick base pairing33. Thus, in addition to confirmation bias, 

some of the published work may result from poorly understood off-target effects.  

 

Figure Legends: 

 

Figure 1: Physical Characterisation of SmartFlare RNA detection probes: SmartFlares were 

re-suspended in nuclease-free deionised water and 10μL dried onto formvar/carbon electron 

microscopy grids. Samples of the Uptake Control (A) and VEGF SmartFlares (B) were imaged on a 

Tecnai spirit Transmision Electron Microscope (TEM) at a nominal magnification of 150,000 times. 

The scale bar represents 100nm. 

 

Figure 2: Cellular Uptake of SmartFlares: HeLa cells were exposed to Uptake Control (A-C), 

VEGF (D-E) or Scrambled Control (G-I) SmartFlares for 18 hours, then washed and imaged with 

confocal laser-scanning microscopy in fluorescence (A,D,G) or transmitted (B,E,H) channels. An 

overlay of the two channels is shown in C,F and I. All frames are shown at identical magnification, 

scale bar represents 10μm. 

 

Figure 3: Confirming Vesicular Containment of SmartFlares: HeLa cells were loaded with 

Uptake Control (A) or VEGF (B) SmartFlares for 18 hours then prepared for TEM as detailed in 



methods. Scale bars represent 1000nm. Confocal microscopy was used to study VEGF 

SmartFlare-loaded cells (C) and cells treated with 500nM DMOG for 18 hours (D). No increase in 

intensity was observed in three independent experiments (E). Correlative fluorescence (F) and 

photothermal (G) microscopy was used to view SmartFlare fluorescence and gold nanoparticle 

cores in the same sample. 

 

Figure 4: Studying the localisation of SmartFlares: HeLa cells were loaded with the VEGF 

SmartFlares in combination with a fluorescent 10kDa dextran to label fluid-phase endocytic 

pathways (A-C). After fixation, samples were immunostained either for the Transferrin Receptor 

(TFN-R: D-F) or Lysosome-associated Membrane Protein 1 (LAMP1: G-I) to demark the recycling 

and lysosomal compartments respectively. Shown are SmartFlare fluorescence (A,D,G) and 

dextran or secondary antibody fluorescence (B,E,H). Panels (C,F,I) show an overlay of the two 

channels (SmartFlares pseudo-coloured red) with the mean Manders’ coefficient (yellow number) 

expressing the proportion of SmartFlare Signal overlapping with the respective marker for all fields 

analysed. 
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Supplementary Figure 1: SmartFlare uptake at 2 hours: HeLa cells were exposed to Uptake 

Control (A-D) or VEGF (E-H) SmartFlares for 2 hours, then washed and imaged with confocal 

laser-scanning microscopy in fluorescence (B,C,F,G) or transmitted (A,E) channels. An overlay of 

the SmartFlares (pseudo-coloured red) and Dextran (pseudo-coloured green) is shown in D & H. 

The top panels (A-H) show the same imaging parameters as were used for 18 hour experiments. 

The bottom panels (A’-H’) shows the identical field imaged with optimal dynamic range for 

visualisation. All frames are shown at identical magnification, scale bar represents 20μm. 

 

  











 


