798 research outputs found

    Relationship between psychological state and level of activity of extrinsic gut innervation in patients with a functional gut disorder

    Get PDF
    Background: Anxiety and depression are known to be associated with alterations in central autonomic activity, and this may manifest as a functional gut disturbance. However, the final expression of motility disturbance is non-specific and non-quantifiable. This study examines the relationship between psychological state and psychosocial functioning with a new direct measure of the level of activity of extrinsic autonomic gut innervation, rectal mucosal Doppler blood flow. Materials and methods: Thirty four female patients (mean age 36 years, range 19-45) with constipation for greater than five years and 19 healthy women (mean age 38 years, range 21-60) were studied. They completed the general health questionnaire28 point scale (GHQ-28; psychosocial functioning) and the Bem sex role inventory (BSRI; an index of women's psychological feelings about their own femininity). On the same day they underwent measurement of rectal mucosal Doppler blood flow, a new validated measure of the activity of gut extrinsic nerve innervation. Measurements were made during the follicular phase and in the fasted state. Results: Women with constipation scored higher on the total GHQ-28 score and the somatisation (p=0.05) and anxiety (p=0.05) subscales of the GHQ-28. There was a negative correlation between mucosal blood flow and GHQ somatisation subscale (r=0.45, p<0.005), anxiety (r=0.38, p<0.05), and depression (r=0.40, p<0.01) scores in women with constipation. Although constipated women scored no higher than controls on the BSRI, there was a significant negative correlation between blood flow and BSRI score (r=0.49, p<0.005) for constipated women. Conclusions: General psychosocial function, somatisation, anxiety, depression, and feelings about female role are impaired in women with constipation and associated with altered rectal mucosal blood flow, a measure of extrinsic gut innervation. These findings suggest that psychological factors are likely to influence gut function via autonomic efferent neural pathways

    Spaces for smoking in a psychiatric hospital: social capital, resistance to control, and significance for 'therapeutic landscapes'

    Get PDF
    This paper reports on research framed by theories of therapeutic landscapes and the ways that the social, physical and symbolic dimensions of landscapes relate to wellbeing and healing. We focus especially on the question of how attributes of therapeutic landscapes are constructed in different ways according to the variable perspectives of individuals and groups. Through an ethnographic case study in a psychiatric hospital in the North of England we explore the perceived significance for wellbeing of ‘smoking spaces’ (where tobacco smoking is practiced in ways that may, or may not be officially sanctioned). We interpret our findings in light of literature on how smoking spaces are linked to the socio-geographical power relations that determine how smoking is organised within the hospital and how this is understood by different groups using the hospital building. We draw on qualitative research findings from discussion groups, observations, and interviews with patients, carers and staff. These focused on their views about the building design and setting of the new psychiatric hospital in relation to their wellbeing, and issues relating to smoking spaces emerged as important for many participants. Creating and managing smoking spaces as a public health measure in psychiatric hospitals is shown to be a controversial issue involving conflicting aims for health and wellbeing of patients and staff. Our findings indicate that although from a physical health perspective, smoking is detrimental, the spaces in which patients and staff smoke have social and psychological significance, providing a forum for the creation of social capital and resistance to institutional control. While the findings relate to one case study setting, the paper illustrates issues of wider relevance and contributes to an international literature concerning the tensions between perceived psychological and psychosocial benefits of smoking vs. physical harm that smoking is likely to cause. We consider the implications for hospital design and the model of care

    'Therapeutic landscapes' and the importance of nostalgia, solastalgia, salvage and abandonment for psychiatric hospital design

    Get PDF
    We examine emotional reactions to changes to medical spaces of care, linked with past experiences. In this paper we draw on findings from a qualitative study of the transfer of psychiatric inpatient care from an old to a newly built facility. We show how the meanings attributed to ‘therapeutic landscapes’ from one׳s past can evoke emotions and memories, manifesting in ideas about nostalgia, solastalgia, salvage and abandonment, which can impinge on one׳s present therapeutic experience. We reflect on how consideration of these ideas might contribute to better future design of psychiatric inpatient facilities and the wellbeing of those using them

    An Exact Diagonalization Demonstration of Incommensurability and Rigid Band Filling for N Holes in the t-J Model

    Full text link
    We have calculated S(q) and the single particle distribution function for N holes in the t - J model on a non--square sqrt{8} X sqrt{32} 16--site lattice with periodic boundary conditions; we justify the use of this lattice in compariosn to those of having the full square symmetry of the bulk. This new cluster has a high density of vec k points along the diagonal of reciprocal space, viz. along k = (k,k). The results clearly demonstrate that when the single hole problem has a ground state with a system momentum of vec k = (pi/2,pi/2), the resulting ground state for N holes involves a shift of the peak of the system's structure factor away from the antiferromagnetic state. This shift effectively increases continuously with N. When the single hole problem has a ground state with a momentum that is not equal to k = (pi/2,pi/2), then the above--mentioned incommensurability for N holes is not found. The results for the incommensurate ground states can be understood in terms of rigid--band filling: the effective occupation of the single hole k = (pi/2,pi/2) states is demonstrated by the evaluation of the single particle momentum distribution function . Unlike many previous studies, we show that for the many hole ground state the occupied momentum states are indeed k = (+/- pi/2,+/- pi/2) states.Comment: Revtex 3.0; 23 pages, 1 table, and 13 figures, all include

    Evaluation of treatments for claw horn lesions in dairy cows in a randomized controlled trial

    Get PDF
    Lameness is one of the most significant endemic disease problems facing the dairy industry. Claw horn lesions (principally sole hemorrhage, sole ulcer, and white line disease) are some of the most prevalent conditions. Despite the fact that thousands of animals are treated for these conditions every year, experimental evidence is limited on the most effective treatment protocols. A randomized, positively controlled clinical trial was conducted to test the recovery of newly lame cows with claw horn lesions. Animals on 5 farms were locomotion scored every 2 wk. Cows were eligible for recruitment if they had 2 nonlame scores followed by a lame score and had a claw horn lesion on a single claw of a single foot. Following a therapeutic trim, enrolled cows were randomly allocated to 1 of 4 treatments: treatment 1—no further treatment (positive control; TRM), treatment 2—trim plus a block on the sound claw (TB), treatment 3—trim plus a 3-d course of the nonsteroidal anti-inflammatory drug (NSAID) ketoprofen (TN), treatment 4—trim plus a block plus ketoprofen (TBN). The primary outcome measure was locomotion score 35 d after treatment, by an observer blind to treatment group. Descriptive statistics suggested that treatment groups were balanced at the time of enrollment, that is, randomization was successful. Based on a sound locomotion score (score 0) 35 d after treatment, the number of cures was 11 of 45 (24.4%) for TRM, 14 of 39 (35.9%) for TB, 12 of 42 (28.6%) for TN, and 23 of 41 (56.1%) for TBN. The difference between TBN and TRM was significant. To test for confounding imbalances between treatment groups, logistic regression models were built with 2 outcomes, either sound (score 0) or nonlame (score 0 or 1) 35 d after treatment. Compared with TRM, animals that received TBN were significantly more likely to cure to a sound outcome. Farm, treatment season, lesion diagnosis, limb affected, treatment operator, and stage of lactation were included in the final models. Our work suggests that lameness cure is maximized with NSAID treatment in addition to the common practices of therapeutic trimming and elevation of the diseased claw using a block when cows are newly and predominantly mildly lame

    Direct Observation of a One Dimensional Static Spin Modulation in Insulating La1.95Sr0.05CuO4

    Full text link
    We report the results of an extensive elastic neutron scattering study of the incommensurate (IC) static spin correlations in La1.95Sr0.05CuO4 which is an insulating spin glass at low temperatures. The present neutron scattering experiments on the same x=0.05 crystal employ a narrower instrumental Q-resolution and thereby have revealed that the crystal has only two orthorhombic twins at low temperatures with relative populations of 2:1. We find that, in a single twin, only two satellites are observed at (1, +/-0.064, L)(ortho) and (0, 1+/-0.064, L)(ortho), that is, the modulation vector is only along the orthorhombic b*-axis. This demonstrates unambiguously that La1.95Sr0.05CuO4 has a one-dimensional static diagonal spin modulation at low temperatures, consistent with certain stripe models. We have also reexamined the x=0.04 crystal that previously was reported to show a single commensurate peak. By mounting the sample in the (H, K, 0) zone, we have discovered that the x=0.04 sample in fact has the same IC structure as the x=0.05x=0.05 sample. The incommensurability parameter d for x=0.04 and 0.05, where d is the distance from (1/2, 1/2) in tetragonal reciprocal lattice units, follows the linear relation d=x. These results demonstrate that the insulator to superconductor transition in the under doped regime (0.05 </= x </= 0.06) in La2-xSrxCuO4 is coincident with a transition from diagonal to collinear static stripes at low temperatures thereby evincing the intimate coupling between the one dimensional spin density modulation and the superconductivity.Comment: 9 pages 8 figure

    Partially filled stripes in the two dimensional Hubbard model: statics and dynamics

    Full text link
    The internal structure of stripes in the two dimensional Hubbard model is studied by going beyond the Hartree-Fock approximation. Partially filled stripes, consistent with experimental observations, are stabilized by quantum fluctuations, included through the Configuration Interaction method. Hopping of short regions of the stripes in the transverse direction is comparable to the bare hopping element. The integrated value of nkn_{\bf \vec{k}} compares well with experimental results.Comment: 4 page

    First-principles extrapolation method for accurate CO adsorption energies on metal surfaces

    Full text link
    We show that a simple first-principles correction based on the difference between the singlet-triplet CO excitation energy values obtained by DFT and high-level quantum chemistry methods yields accurate CO adsorption properties on a variety of metal surfaces. We demonstrate a linear relationship between the CO adsorption energy and the CO singlet-triplet splitting, similar to the linear dependence of CO adsorption energy on the energy of the CO 2π\pi* orbital found recently {[Kresse {\em et al.}, Physical Review B {\bf 68}, 073401 (2003)]}. Converged DFT calculations underestimate the CO singlet-triplet excitation energy ΔEST\Delta E_{\rm S-T}, whereas coupled-cluster and CI calculations reproduce the experimental ΔEST\Delta E_{\rm S-T}. The dependence of EchemE_{\rm chem} on ΔEST\Delta E_{\rm S-T} is used to extrapolate EchemE_{\rm chem} for the top, bridge and hollow sites for the (100) and (111) surfaces of Pt, Rh, Pd and Cu to the values that correspond to the coupled-cluster and CI ΔEST\Delta E_{\rm S-T} value. The correction reproduces experimental adsorption site preference for all cases and obtains EchemE_{\rm chem} in excellent agreement with experimental results.Comment: Table sent as table1.eps. 3 figure

    A numerical study of multi-soliton configurations in a doped antiferromagnetic Mott insulator

    Full text link
    We evaluate from first principles the self-consistent Hartree-Fock energies for multi-soliton configurations in a doped, spin-1/2, antiferromagnetic Mott insulator on a two-dimensional square lattice. We find that nearest-neighbor Coulomb repulsion stabilizes a regime of charged meron-antimeron vortex soliton pairs over a region of doping from 0.05 to 0.4 holes per site for intermediate coupling 3 < U/t <8. This stabilization is mediated through the generation of ``spin-flux'' in the mean-field antiferromagnetic (AFM) background. Holes cloaked by a meron-vortex in the spin-flux AFM background are charged bosons. Our static Hartree-Fock calculations provide an upper bound on the energy of a finite density of charged vortices. This upper bound is lower than the energy of the corresponding charged stripe configurations. A finite density of charge carrying vortices is shown to produce a large number of unoccupied electronic levels in the Mott-Hubbard charge transfer gap. These levels lead to significant band tailing and a broad mid-infrared band in the optical absorption spectrum as observed experimentally. At very low doping (below 0.05) the doping charges create extremely tightly bound meron-antimeron pairs or even isolated conventional spin-polarons, whereas for very high doping (above 0.4) the spin background itself becomes unstable to formation of a conventional Fermi liquid and the spin-flux mean-field is energetically unfavorable. Our results point to the predominance of a quantum liquid of charged, bosonic, vortex solitons at intermediate coupling and intermediate doping concentrations.Comment: 12 pages, 25 figures; added references, modified/eliminated some figure

    Tissue-resident memory T cells invade the brain parenchyma in multiple sclerosis white matter lesions

    Get PDF
    Multiple sclerosis is a chronic inflammatory, demyelinating disease, although it has been suggested that in the progressive late phase, inflammatory lesion activity declines. We recently showed in the Netherlands Brain Bank multiple sclerosis-autopsy cohort considerable ongoing inflammatory lesion activity also at the end stage of the disease, based on microglia/macrophage activity. We have now studied the role of T cells in this ongoing inflammatory lesion activity in chronic multiple sclerosis autopsy cases. We quantified T cells and perivascular T-cell cuffing at a standardized location in the medulla oblongata in 146 multiple sclerosis, 20 neurodegenerative control and 20 non-neurological control brain donors. In addition, we quantified CD3+, CD4+, and CD8+ T cells in 140 subcortical white matter lesions. The location of CD8+ T cells in either the perivascular space or the brain parenchyma was determined using CD8/laminin staining and confocal imaging. Finally, we analysed CD8+ T cells, isolated from fresh autopsy tissues from subcortical multiple sclerosis white matter lesions (n = 8), multiple sclerosis normal-ap
    corecore