104 research outputs found

    Keith Mangrum in a Senior Oboe Recital and Gene Mason in a Sophomore Trumpet Recital

    Get PDF
    This is the program for the senior oboe recital of Keith Mangrum and the sophomore trumpet recital of Gene Mason. The recital was held on December 10, 1970, at 8:00 p.m., in Mitchell Hall. Sharon Coe and Marilyn Rauch assisted on piano; Larry Aldridge assisted on the clarinet; and Charles Wesley assisted on the bassoon

    Doug West and Gene Mason in a Joint Senior Recital

    Get PDF
    This is the program for the joint senior recital of Doug West and Gene Mason. West performed on the trombone and was accompanied by Veda Smith on piano. Mason performed on the trumpet and was accompanied by Harry Raley on piano and Robert McMenis on the organ. The recital was held on December 7, 1972

    Rodger D. Morris and Gene U. Mason in a Joint Junior Recital

    Get PDF
    This is the program for the joint senior recital of pianist Rodger D. Morris and trumpeter Gene U. Mason. Mary DeArmond assisted Mason on piano. The recital took place November 5, 1971

    Processing Updated Imagery for Use in Dismounted Mission Planning on NETT Warrior

    Get PDF
    Small unit leaders need real time images to aid in planning missions and making decisions. Currently, this ability partially exists through the use of short range Unmanned Aerial Vehicles (UAV) like Raven and Shadow, which provide unprocessed imagery. There is a limited capability to gather imagery for a large area, process it into a useable format, and deliver the product to the small unit leader. Android-based platforms like Nett Warrior currently use older, primarily satellite, imagery to depict the battle space. We are creating a process that takes up to date satellite and UAV imagery in a format that is available as an offline map and use the Nett Warrior platform to deliver this imagery to small unit leaders. This enhanced imagery will allow leaders to plan missions in a more effective manner due to the updated imagery and the benefits mobile maps provide

    Extension of Longevity and Reduction of Inflammation is Ovarian-Dependent, but Germ Cell-Independent in Post-Reproductive Female Mice

    Get PDF
    Cardiovascular disease, rare in premenopausal women, increases sharply at menopause and is typically accompanied by chronic inflammation. Previous work in our laboratory demonstrated that replacing senescent ovaries in post-reproductive mice with young, actively cycling ovaries restored many health benefits, including decreased cardiomyopathy and restoration of immune function. Our objective here was to determine if depletion of germ cells from young transplanted ovaries would alter the ovarian-dependent extension of life and health span. Sixty-day-old germ cell-depleted and germ cell-containing ovaries were transplanted to post-reproductive, 17-month-old mice. Mean life span for female CBA/J mice is approximately 644 days. Mice that received germ cell-containing ovaries lived 798 days (maximum = 815 days). Mice that received germ cell-depleted ovaries lived 880 days (maximum = 1046 days), 29% further past the time of surgery than mice that received germ cell-containing ovaries. The severity of inflammation was reduced in all mice that received young ovaries, whether germ cell-containing or germ cell-depleted. Aging-associated inflammatory cytokine changes were reversed in post-reproductive mice by 4 months of new-ovary exposure. In summary, germ cell depletion enhanced the longevity-extending effects of the young, transplanted ovaries and, as with germ cell-containing ovaries, decreased the severity of inflammation, but did so independent of germ cells. Based on these observations, we propose that gonadal somatic cells are programed to preserve the somatic health of the organism with the intent of facilitating future germline transmission. As reproductive potential decreases or is lost, the incentive to preserve the somatic health of the organism is lost as well

    Mutations at positions 186 and 194 in the HA gene of the 2009 H1N1 pandemic influenza virus improve replication in cell culture and eggs

    Get PDF
    Obtaining suitable seed viruses for influenza vaccines poses a challenge for public health authorities and manufacturers. We used reverse genetics to generate vaccine seed-compatible viruses from the 2009 pandemic swine-origin influenza virus. Comparison of viruses recovered with variations in residues 186 and 194 (based on the H3 numbering system) of the viral hemagglutinin showed that these viruses differed with respect to their ability to grow in eggs and cultured cells. Thus, we have demonstrated that molecular cloning of members of a quasispecies can help in selection of seed viruses for vaccine manufacture

    A cryogenic rotation stage with a large clear aperture for the half-wave plates in the Spider instrument

    Get PDF
    We describe the cryogenic half-wave plate rotation mechanisms built for and used in Spider, a polarization-sensitive balloon-borne telescope array that observed the Cosmic Microwave Background at 95 GHz and 150 GHz during a stratospheric balloon flight from Antarctica in January 2015. The mechanisms operate at liquid helium temperature in flight. A three-point contact design keeps the mechanical bearings relatively small but allows for a large (305 mm) diameter clear aperture. A worm gear driven by a cryogenic stepper motor allows for precise positioning and prevents undesired rotation when the motors are depowered. A custom-built optical encoder system monitors the bearing angle to an absolute accuracy of +/- 0.1 degrees. The system performed well in Spider during its successful 16 day flight.Comment: 11 pages, 7 figures, Published in Review of Scientific Instruments. v2 includes reviewer changes and longer literature revie

    Modeling and characterization of the SPIDER half-wave plate

    Get PDF
    Spider is a balloon-borne array of six telescopes that will observe the Cosmic Microwave Background. The 2624 antenna-coupled bolometers in the instrument will make a polarization map of the CMB with approximately one-half degree resolution at 145 GHz. Polarization modulation is achieved via a cryogenic sapphire half-wave plate (HWP) skyward of the primary optic. We have measured millimeter-wave transmission spectra of the sapphire at room and cryogenic temperatures. The spectra are consistent with our physical optics model, and the data gives excellent measurements of the indices of A-cut sapphire. We have also taken preliminary spectra of the integrated HWP, optical system, and detectors in the prototype Spider receiver. We calculate the variation in response of the HWP between observing the CMB and foreground spectra, and estimate that it should not limit the Spider constraints on inflation

    Pointing control for the SPIDER balloon-borne telescope

    Full text link
    We present the technology and control methods developed for the pointing system of the SPIDER experiment. SPIDER is a balloon-borne polarimeter designed to detect the imprint of primordial gravitational waves in the polarization of the Cosmic Microwave Background radiation. We describe the two main components of the telescope's azimuth drive: the reaction wheel and the motorized pivot. A 13 kHz PI control loop runs on a digital signal processor, with feedback from fibre optic rate gyroscopes. This system can control azimuthal speed with < 0.02 deg/s RMS error. To control elevation, SPIDER uses stepper-motor-driven linear actuators to rotate the cryostat, which houses the optical instruments, relative to the outer frame. With the velocity in each axis controlled in this way, higher-level control loops on the onboard flight computers can implement the pointing and scanning observation modes required for the experiment. We have accomplished the non-trivial task of scanning a 5000 lb payload sinusoidally in azimuth at a peak acceleration of 0.8 deg/s2^2, and a peak speed of 6 deg/s. We can do so while reliably achieving sub-arcminute pointing control accuracy.Comment: 20 pages, 12 figures, Presented at SPIE Ground-based and Airborne Telescopes V, June 23, 2014. To be published in Proceedings of SPIE Volume 914

    The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey

    Get PDF
    We report on extragalactic sources detected in a 455 square-degree map of the southern sky made with data at a frequency of 148 GHz from the Atacama Cosmology Telescope 2008 observing season. We provide a catalog of 157 sources with flux densities spanning two orders of magnitude: from 15 to 1500 mJy. Comparison to other catalogs shows that 98% of the ACT detections correspond to sources detected at lower radio frequencies. Three of the sources appear to be associated with the brightest cluster galaxies of low redshift X-ray selected galaxy clusters. Estimates of the radio to mm-wave spectral indices and differential counts of the sources further bolster the hypothesis that they are nearly all radio sources, and that their emission is not dominated by re-emission from warm dust. In a bright (>50 mJy) 148 GHz-selected sample with complete cross-identifications from the Australia Telescope 20 GHz survey, we observe an average steepening of the spectra between 5, 20, and 148 GHz with median spectral indices of α520=0.07±0.06\alpha_{\rm 5-20} = -0.07 \pm 0.06, α20148=0.39±0.04\alpha_{\rm 20-148} = -0.39 \pm0.04, and α5148=0.20±0.03\alpha_{\rm 5-148} = -0.20 \pm 0.03. When the measured spectral indices are taken into account, the 148 GHz differential source counts are consistent with previous measurements at 30 GHz in the context of a source count model dominated by radio sources. Extrapolating with an appropriately rescaled model for the radio source counts, the Poisson contribution to the spatial power spectrum from synchrotron-dominated sources with flux density less than 20 mJy is C^{\rm Sync} = (2.8 \pm 0.3) \times 10^{-6} \micro\kelvin^2.Comment: Accepted to Ap
    corecore