6,045 research outputs found

    Small scale model analysis of reinforced concrete beams in flexure and in torsion

    Get PDF
    Call number: LD2668 .T4 1967 M399Master of Scienc

    Abundances and energy spectra of corotating interaction region heavy ions

    Get PDF
    We have surveyed He-Fe spectra for 41 Corotating Interaction Regions (CIRs) from 1998–2007 observed on ACE. The spectra are similar for all species, and have the form of broken power laws with the spectral break occurring at a few MeV/nucleon. Except for overabundances of He and Ne, the abundances are close to those of the solar wind. We find the rare isotope ^3He is enhanced in ~40% of the events. In individual CIRs the Fe/O ratio correlates strongly with the solar wind Fe/O ratio measured 2–4 days prior to the CIR passage. Taken together with previously reported observations of pick-up He^+ in CIRs, these observations provide evidence that CIRs are accelerated out of a suprathermal ion pool of heated solar wind ions, pick-up ions, and remnant suprathermal ions from impulsive solar energetic particle (SEP) events

    How efficient are coronal mass ejections at accelerating solar energetic particles?

    Get PDF
    The largest solar energetic particle (SEP) events are thought to be due to particle acceleration at a shock driven by a fast coronal mass ejection (CME). We investigate the efficiency of this process by comparing the total energy content of energetic particles with the kinetic energy of the associated CMEs. The energy content of 23 large SEP events from 1998 through 2003 is estimated based on data from ACE, GOES, and SAMPEX, and interpreted using the results of particle transport simulations and inferred longitude distributions. CME data for these events are obtained from SOHO. When compared to the estimated kinetic energy of the associated coronal mass ejections (CMEs), it is found that large SEP events can extract ~10% or more of the CME kinetic energy. The largest SEP events appear to require massive, very energetic CMEs

    Three Futures for Postcrisis Banking in the Americas: The Financial Trilemma and the Wall Street Complex

    Full text link
    This would seem an opportune moment to reshape banking systems in the Americas. But any effort to rethink and improve banking must acknowledge three major barriers. The first is a crisis of vision: there has been too little consideration of what kind of banking system would work best for national economies in the Americas. The other two constraints are structural. Banking systems in Mexico and the rest of Latin America face a financial regulation trilemma, the logic and implications of which are similar to those of smaller nations' macroeconomic policy trilemma. The ability of these nations to impose rules that would pull banking systems in the direction of being more socially productive and economically functional is constrained both by regional economic compacts (in the case of Mexico, NAFTA) and by having a large share of the domestic banking market operated by multinational banks. For the United States, the structural problem involves the huge divide between Wall Street megabanks and the remainder of the U.S. banking system. The ambitions, modes of operation, and economic effects of these two different elements of U.S. banking are quite different. The success, if not survival, of one element depends on the creation of a regulatory atmosphere and set of enabling federal government subsidies or supports that is inconsistent with the success, or survival, of the other element

    STEREO and ACE observations of CIR particles

    Get PDF
    In the present solar minimum, corotating interaction regions (CIRs) produce frequent particle enhancements at 1 AU as observed at STEREO and ACE. As the two STEREO spacecraft move apart, differences in CIR time profiles observed at each spacecraft are becoming large. The timing differences are often roughly similar to the corotation time lag between the two spacecraft, however many of the features seen at Ahead and Behind require more than just a time shift. Perhaps transient disturbances in the solar wind affect connection to or transport from the shock, or temporal changes occur in the CIR shock itself. Additional timing differences of >1 day result from the different heliographic latitudes of the two STEREO spacecraf

    Geometry of Frictionless and Frictional Sphere Packings

    Get PDF
    We study static packings of frictionless and frictional spheres in three dimensions, obtained via molecular dynamics simulations, in which we vary particle hardness, friction coefficient, and coefficient of restitution. Although frictionless packings of hard-spheres are always isostatic (with six contacts) regardless of construction history and restitution coefficient, frictional packings achieve a multitude of hyperstatic packings that depend on system parameters and construction history. Instead of immediately dropping to four, the coordination number reduces smoothly from z=6z=6 as the friction coefficient μ\mu between two particles is increased.Comment: 6 pages, 9 figures, submitted to Phys. Rev.

    KRAS mutation and Consensus Molecular Subtypes 2 and 3 are independently associated with reduced immune infiltration and reactivity in colorectal cancer

    Get PDF
    Abstract Purpose: KRAS mutation is a common canonical mutation in colorectal cancer, found at differing frequencies in all consensus molecular subtypes (CMS). The independent immunobiological impacts of RAS mutation and CMS are unknown. Thus, we explored the immunobiological effects of KRAS mutation across the CMS spectrum. Experimental Design: Expression analysis of immune genes/signatures was performed using The Cancer Genome Atlas (TCGA) RNA-seq and the KFSYSCC microarray datasets. Multivariate analysis included KRAS status, CMS, tumor location, MSI status, and neoantigen load. Protein expression of STAT1, HLA-class II, and CXCL10 was analyzed by digital IHC. Results: The Th1-centric co-ordinate immune response cluster (CIRC) was significantly, albeit modestly, reduced in KRAS-mutant colorectal cancer in both datasets. Cytotoxic T cells, neutrophils, and the IFNγ pathway were suppressed in KRAS-mutant samples. The expressions of STAT1 and CXCL10 were reduced at the mRNA and protein levels. In multivariate analysis, KRAS mutation, CMS2, and CMS3 were independently predictive of reduced CIRC expression. Immune response was heterogeneous across KRAS-mutant colorectal cancer: KRAS-mutant CMS2 samples have the lowest CIRC expression, reduced expression of the IFNγ pathway, STAT1 and CXCL10, and reduced infiltration of cytotoxic cells and neutrophils relative to CMS1 and CMS4 and to KRAS wild-type CMS2 samples in the TCGA. These trends held in the KFSYSCC dataset. Conclusions: KRAS mutation is associated with suppressed Th1/cytotoxic immunity in colorectal cancer, the extent of the effect being modulated by CMS subtype. These results add a novel immunobiological dimension to the biological heterogeneity of colorectal cancer. Clin Cancer Res; 24(1); 224–33. ©2017 AACR.</jats:p

    The acquisition of Sign Language: The impact of phonetic complexity on phonology

    Get PDF
    Research into the effect of phonetic complexity on phonological acquisition has a long history in spoken languages. This paper considers the effect of phonetics on phonological development in a signed language. We report on an experiment in which nonword-repetition methodology was adapted so as to examine in a systematic way how phonetic complexity in two phonological parameters of signed languages — handshape and movement — affects the perception and articulation of signs. Ninety-one Deaf children aged 3–11 acquiring British Sign Language (BSL) and 46 hearing nonsigners aged 6–11 repeated a set of 40 nonsense signs. For Deaf children, repetition accuracy improved with age, correlated with wider BSL abilities, and was lowest for signs that were phonetically complex. Repetition accuracy was correlated with fine motor skills for the youngest children. Despite their lower repetition accuracy, the hearing group were similarly affected by phonetic complexity, suggesting that common visual and motoric factors are at play when processing linguistic information in the visuo-gestural modality

    Confined granular packings: structure, stress, and forces

    Full text link
    The structure and stresses of static granular packs in cylindrical containers are studied using large-scale discrete element molecular dynamics simulations in three dimensions. We generate packings by both pouring and sedimentation and examine how the final state depends on the method of construction. The vertical stress becomes depth-independent for deep piles and we compare these stress depth-profiles to the classical Janssen theory. The majority of the tangential forces for particle-wall contacts are found to be close to the Coulomb failure criterion, in agreement with the theory of Janssen, while particle-particle contacts in the bulk are far from the Coulomb criterion. In addition, we show that a linear hydrostatic-like region at the top of the packings unexplained by the Janssen theory arises because most of the particle-wall tangential forces in this region are far from the Coulomb yield criterion. The distributions of particle-particle and particle-wall contact forces P(f)P(f) exhibit exponential-like decay at large forces in agreement with previous studies.Comment: 11 pages, 11 figures, submitted to PRE (v2) added new references, fixed typo
    • …
    corecore