140 research outputs found

    A quadrilateral vortex method applied to configurations with high circulation

    Get PDF
    A quadrilateral vortex-lattice method is briefly described for calculating the potential flow aerodynamic characteristics of high-lift configurations. It incorporates an iterative scheme for calculating the deformation of forcefree wakes, including wakes from side edges. The method is applicable to multiple lifting surfaces with part-span flaps deflected, and can include ground effect and wind-tunnel interference. Numerical results, presented for a number of high-lift configurations, demonstrate rapid convergence of the iterative technique. The results are in good agreement with available experimental data

    A subvortex technique for the close approach to a discretized vortex sheet

    Get PDF
    The close-approach problem associated with vortex-lattice methods was examined numerically with the objective of calculating velocities at arbitrary points, not just at midpoints, between the vortices. The objective was achieved using a subvortex technique in which a vortex splits into an increasing number of subvortices as it is approached. The technique, incorporated in a two-dimensional potential flow method using "submerged" vortices and sources, was evaluated for a cambered Joukowski airfoil. The method could be extended to three dimensions, and should improve non-linear methods, which calculate interference effects between multiple wings and vortex wakes, and which include procedures for force-free wakes

    Application of the AMI C sub l sub max prediction method to a number of airfoils

    Get PDF
    A method for calculating the flow about airfoils up to and beyond the stall is described. It is an iterative procedure between potential flow and boundary layer solutions. The separated region is modeled in the potential flow analysis using free vortex sheets which require an inner iteration to establish their shapes. The free vortex sheet length is an important parameter in the potential flow calculation. Results so far indicate a possible correlation between wake length and airfoil thickness/chord ratio. Calculated and experimental results are compared for a series of airfoils

    Study for prediction of rotor/wake/fuselage interference, part 1

    Get PDF
    A method was developed which allows the fully coupled calculation of fuselage and rotor airloads for typical helicopter configurations in forward flight. To do this, an iterative solution is carried out based on a conventional panel representation of the fuselage and a blade element representation of the rotor where fuselage and rotor singularity strengths are determined simultaneously at each step and the rotor wake is allowed to relax (deform) in response to changes in rotor wake loading and fuselage presence. On completion of the iteration, rotor loading and inflow, fuselage singularity strength (and, hence, pressure and velocity distributions) and rotor wake are all consistent. The results of a fully coupled calculation of the flow around representative helicopter configurations are presented. The effect of fuselage components on the rotor flow field and the overall wake structure is detailed and the aerodynamic interference between the different parts of the aircraft is discussed

    Study for prediction of rotor/wake/fuselage interference. Part 2: Program users guide

    Get PDF
    A method was developed which permits the fully coupled calculation of fuselage and rotor airloads for typical helicopter configurations in forward flight. To do this, an iterative solution is carried out based on a conventional panel representation of the fuselage and a blade element representation of the rotor where fuselage and rotor singularity strengths are determined simultaneously at each step and the rotor wake is allowed to relax (deform) in response to changes in rotor wake loading and fuselage presence. On completion of the iteration, rotor loading and inflow, fuselage singularity strength (and, hence, pressure and velocity distributions) and rotor wake are all consistent. The results of a fully coupled calculation of the flow around representative helicopter configurations are presented. The effect of fuselage components on the rotor flow field and the overall wake structure is discussed as well as the aerodynamic interference between the different parts of the aircraft. Details of the computer program are given

    An analysis method for multi-component airfoils in separated flow

    Get PDF
    The multi-component airfoil program (Langley-MCARF) for attached flow is modified to accept the free vortex sheet separation-flow model program (Analytical Methods, Inc.-CLMAX). The viscous effects are incorporated into the calculation by representing the boundary layer displacement thickness with an appropriate source distribution. The separation flow model incorporated into MCARF was applied to single component airfoils. Calculated pressure distributions for angles of attack up to the stall are in close agreement with experimental measurements. Even at higher angles of attack beyond the stall, correct trends of separation, decrease in lift coefficients, and increase in pitching moment coefficients are predicted

    Formation flying benefits based on vortex lattice calculations

    Get PDF
    A quadrilateral vortex-lattice method was applied to a formation of three wings to calculate force and moment data for use in estimating potential benefits of flying aircraft in formation on extended range missions, and of anticipating the control problems which may exist. The investigation led to two types of formation having virtually the same overall benefits for the formation as a whole, i.e., a V or echelon formation and a double row formation (with two staggered rows of aircraft). These formations have unequal savings on aircraft within the formation, but this allows large longitudinal spacings between aircraft which is preferable to the small spacing required in formations having equal benefits for all aircraft. A reasonable trade-off between a practical formation size and range benefit seems to lie at about three to five aircraft with corresponding maximum potential range increases of about 46 percent to 67 percent. At this time it is not known what fraction of this potential range increase is achievable in practice

    A submerged singularity method for calculating potential flow velocities at arbitrary near-field points

    Get PDF
    A discrete singularity method has been developed for calculating the potential flow around two-dimensional airfoils. The objective was to calculate velocities at any arbitrary point in the flow field, including points that approach the airfoil surface. That objective was achieved and is demonstrated here on a Joukowski airfoil. The method used combined vortices and sources ''submerged'' a small distance below the airfoil surface and incorporated a near-field subvortex technique developed earlier. When a velocity calculation point approached the airfoil surface, the number of discrete singularities effectively increased (but only locally) to keep the point just outside the error region of the submerged singularity discretization. The method could be extended to three dimensions, and should improve nonlinear methods, which calculate interference effects between multiple wings, and which include the effects of force-free trailing vortex sheets. The capability demonstrated here would extend the scope of such calculations to allow the close approach of wings and vortex sheets (or vortices)

    A three-dimensional viscous/potential flow interaction analysis method for multi-element wings: Modifications to the potential flow code to allow part-span, high-lift devices and close-interference calculations

    Get PDF
    The description of the modified code includes details of a doublet subpanel technique in which panels that are close to a velocity calculation point are replaced by a subpanel set. This treatment gives the effect of a higher panel density without increasing the number of unknowns. In particular, the technique removes the close approach problem of the earlier singularity model in which distortions occur in the detailed pressure calculation near panel corners. Removal of this problem allowed a complete wake relaxation and roll-up iterative procedure to be installed in the code. The geometry package developed for the new technique and also for the more general configurations is based on a multiple patch scheme. Each patch has a regular array of panels, but arbitrary relationships are allowed between neighboring panels at the edges of adjacent patches. This provides great versatility for treating general configurations

    Inviscid analysis of unsteady blade tip flow correlation studies

    Get PDF
    Two computer programs, VSAERO-TS and VSAERO-H, were used for computing the unsteady subsonic aerodynamic characteristics of arbitrarily shaped wings oscillating in pitch. Program VSAERO-TS is a time-stepping analysis capable of treating large amplitude motions while program VSAERO-H uses harmonic wake and small amplitude assumptions. A comparison between the computed (VSAERO-TS and VSAERO-H) and DFVLR test results for chordwise pressure distributions for rectangular, swept, taper and ogee blade tips is presented in this report. A wide range of angles of attack (mean) from 0 to 12 deg and reduced frequencies of 0.1, 0.2 and 0.3 are covered in this report. Also, the comparison includes several spanwise stations
    corecore