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A Submerged Singularity Method for Calculating

Potentlal Flow Velooities a* Arbitrary Near-Field Points

Brian Maskew*
Ames Reseavch Center, NAS4, Moffett Field, California 94035

Summary

A diecrete singularity method has been developed for calculating the
potential Flow around two-dimensioral airfoills. The objective was to calcu-
late veloclties at any arbitrary point in the flow fileld, including polnts
that approach the ailrfoil surface. That objective was achieved and is
demonstrated here on a Joukowski airfoil. The method used combined vortices
and sources ''submerged" a small distance below the airfoil surface and
incorporated a near—-fileld subvortex technique developed earlier. When a
veloeity calculation point approached the airfoil surface, the number of
diserete singularities effectively increased (but only locally) to keep the
point just outside the error region of the submerged singularity discretiza-
tion. The method could be extended to three dlmensions and should improve
nonlinear methods, which calculate intexrference effects between muliiple wings,
and whieh include the effects of force-free trailing vortex sheets. The
capability demonstrated here would extend the scope of such calculations to

allow the close approach of wings and vortex sheets (or vortices).

The author wishes to express his sincere appreciation to Mrs. Opal J.
Lemmer for developing the plotting routines for this work; these routines
reduced the analysis effort considerably.

Index categories: Aircraft Aerodynamics; Subsonie Flow; Potential Flow.

#NRC Research Associate; now Senior Research Scientist with Analytical
Methods, Inc., 100 - 11l6th S.E., Bellevue, Washington 98004,
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Nomenclature

length of vortex sheet represented by a discrete vortex (approximately

equal to the distance between the two control points adjacent to the

vortex)

distance along the vortex sheet between the kth and the k + 1 th

basic vortices (Eq. (5))

angle parameter for positioning the vortices, Eq. (3)

increment im 6 between two basic vortices

inerement dn O between two subvortices

surface length (Egq. (3))

surface length measured to a basilc vortex from the beginning of a

region (i.e., from © = 0)

position vector for basic vortices

position vector For subvortices

position vector of a calculation polnt relative to a vortex

modulus of a, etc.

unilt normal vector at the alrfoil surface

cartesian unit vector system (Fig. 1)

height of a velocity calculation point above the local vortex sheet

velocity vector

components of the vortex-induced velocity vector in the I and k
directions, respectively (Fig. 1)

vaortex strength

piecewise~constant doublet strength, i.e., strength of opposing

vortices at each end of a doublet panel (Fig. 3)



o = gource strength

C = 11ft coefficlent

L
CD = drag coefficlent
Cy = pltching moment coefficient about the origin

NBES = number of basic singularities

NSV = number of subvortices used on a segment between two basile wvortilces
FNS = factor on the number of subvortices (Eq. (1))

NRF = near-field radius factor, applied to A (Subsection 3.3)

¢DF = submergnd depth factor, applied to A

SSF = subvortex strength factor (Eq. (4))

1.0 Introduction

This is the second paper from a work program aimed at removing the close-
a%proach problem associated with vortex-lattice methods. The first paper!
deseribed a subvortex technique by which the near-field problem axea of a
discretized vortex sheet could be reduced to a small region, and showed an
application in a free-vortex sheet rollup caleulation. The present paper is
.concerned with potential flow pressure calculatdons at arbitrary surface
points on thick, two-dimensional airfoils.

The objective of this study was to pradlct the velocity at any arbitrary
point in the flowfield, especlally at points that approached the discretized
vortex sheet.! Not only would this enhance the versatility of vortex lattice
methods,?™" but it would extend the force-free wake calculations3~15 toward
close~approacn situations dnvolving multiple components and their wakes.

Such a capability would particularly benefit the analysis of high-lift

configurations and the calculation of other close interference effects between



wings and vortex sheets (or vortices) such as occur in configurations with
lecading edge or tip-edge vortlces.

Although the present paper deals with the near-field problem in two-
dimensional flow, the extensilon for three-dimensional methods (partdicularly
for methods having a force-free wake) is a major consideration throughout.
The development of the discrete singularity technique is described in Sec-
tion 2, and a study of the effects of various parametexs in the model 1s
given in Section 3. The calculatlons are based on a cambered Joukowskl
airfoil, and are primarily concerned with the detailed prescure distribution,
but, as a means of indicating overall accuracy, coefficients of drag — which
should be zero here — lift and pitching moment also are evaluated by integrat-

ing surface pressure effects.

2.0 Development of the Method
2.1 DBasic Considerations

Existing surface singularity methods, 518 which are based mainly on
piecewise constant singularity distributions on plane panels, have proved very
powerful tools for predicting the potential flow characteristics of many
configurations. However, in common with vortex lattice methods, their sur-
face veloeity calculations are assentially restricted to the control points.
The present objective of calculating velocities at arbitrary points requires
the near—field characteristics of a higher-order representation for both the
singularity distribution and the airfoil geometry. Several higher—-crder
surface singularity methods have been developed rec:ent:lj,',“"22 but they do
not necessarily have the capability for calculating velocities at arbitrary
surface poilnts. Furthermore, high-order representation can be cumbersome to

4



apply to three-dimensional high-lift configurations with multiple force-free
wakes. Alsgo, it can be wasteful iIn computing effort when calculating
veloelties at even a small distance from the singularity sheet unless care-
fully controlled far~field models are ineluded.

High-oxder representation adds little refinement to caleulations in the
far-field, yet many essentlally far-field veloeity calculations are performed
when relaxing the tyalling vortices in force-free wake applications,B+7
On the other hand, the simplest model for far-field caleulations is based on
vortex-lattice theory; indeed, some very versatlle methods have been devel-
oped, ?*12 put velocity calculations close to the discretized vortex sheets

are restricted to special lines of approach.1

2.2 Submerged Singularities

One solution 1s to keep the singularity model simple and to place it
inside the airfoil surface. The airfoil contour is then treated as a
streamline of the flow. Several flow calculation methods include internal
singularities, either on the chord line or on the camber line. In the present
work, internal singularities were developed such that they were placed on a
"submexged" sheet closely related to the airfeil contour shape (Fig. 1).
Obviously, the upper and lower parts of the sheet had a crossaver upstream of
the trailing edge, and so the affected parts were replaced by a single sheet
extending from the crossover to the tralling edge along the mean line.

The effort to calculate three-dimensional wake rollup makes 1t prefer-

able to use discrete singularities, but thin airfeils might require many

tThis idea was suggested by Dr. V. J. Rossow in the Large-Scale Aerodynam-
ics Branch at the NASA Ames Research Center,



singularities to malntaln an accurate contour. TFox example, Fig. 2 shows
pressure values calculated direetly at arbitrary points on a cambered
Joukowski alrfoll which was represented by 4l submerged discrete vortices on
a cosine spacing (described in Subsection 2.4). The vortex strengths were
solved after specifying tangential flow at a set of control points on the
airfoil surface.’ The control points and vortices are indicated in the lower
part of Fig. 2. The C; based on circulation was 1.4% in exrror, The 120
pressure calculation points are nnt related to the vortex positlons, and so
the caleulated pressure distribution shows large oscillations about the exact
line (but it is much better than the distribution with the vortices on the
surface). The submexrged depth was 0.44, whereas a depth of at least 14
would be required to reduce the errors to an acceptable level.! But the
required number of vortices might then be unacceptably large (bearing in mind
the three-dimensional case) especially if the close relationshilp between the
submerged sheet and the airfoill contour is to be maintained. The calculated
resulks downstream of the crossover indicate that such a relationship, i.e.,
separate sheets as opposed to a single mean-line gheet, might be important

For this model. (The submerged depth is examined in Subsection 3.2.)

2.3 The Subvortex Technique

The subvortex techniquel offers an attractive solution to this problem
because it increases the number of vortices, but only where and when needed.
Also, it is a logical model to use with the submerged singularity didea; for
practical reasons, the subvortex technique gives a small region close to the

1

singularity sheet where veloclty errors are still appreciable. This region

i1s now enclosed in the airfoil contour. Thus, calculation points approaching



the alrfoll surface never "see" the holes in the discretization because,
locally, the number of subvortices Llnecreases to keep the polnt just outsilde
the error reglon. As the calculation point moves from the asurface, however,
the vortex model qulckly reverts to the basic disceretization. The expression
in Ref, 1 that controls the number of subvortices has been modlfied to dlmprove
the variatlion in NSV as the calculation point moves aqlong the surface., The

new expregsion 1s

NSV = TNS {inLeger—parL-of [ [ (i7A ? %n/NRFﬁ)?l] (L

where TNS, an {even) input pavametexr in the computer program, allows the
density of the subvortex system to be varied. The number of subvortices ls
kept even to ensure that the control points, as well as the basile vortex

1

locations, are midpoints in the subvortex system.” An upper limit is placed

on the number of subvortices, based on a submerged depth factor (SDF), i.e.,

NSVmax = FNS (integer—part—of Eﬁ?

This prevents a runaway condition for the number of subvortices used near the
trailing edge.

The same induced veloclty expression is used throughout, i.e.,

v r(.__”i + ”‘—‘) (2)
= 27

where U= a /a%, and W = -a_/a?. The vector a = (a_ i + a k) is the posi-
z x - *= Z=

tion vector of the ecalculation point relative to the vortex belng considered

(basic vortex or subvortex) and a? = aca. The near-field treatment, there-

fore, is complicated only by the interpolation for the subvortex positions



and strengths; in the present work, linesr interpoistion was twled indtially

for both quantities to keep the model simple,

2.4 Vortox Poaitions

In the earller work,l the vortices were posiltioned with equal spaecing,
but in the present study, the inftial vortices (before submerging) were
positioned on the alrfoll surface using equal angle dnerements In a cosine
equation applied to distance along the contour, i.ec., the distance along the

contour to the kth vortex point is

= 5(L - cos B)

(3)
vy 2

B

where § is the length of cantour associated with the fatepval © £ § £ .
in thié gpacing system, half-angles separate the initial vortex positilons
from the control points where the boundary condition of tangential flow is
speclfled. This is an adaptation of Lan's work;23 it keeps the singulaxilty
strength distribution more uniform when passing through '"difficult" regions
such as leading and trailling edges and flap Linge lines, With this point
distribution, the filxst control point 1ls located at the trailing edge, and so
the Kutta condlition is applied by specifying the flow dilrection there, e.g.,
the direction along the mean line.

From thelr initial surface positions, the vortices are submerped along
the local normal to the surface by a fraction of 4, d.e., SDFA. The sub~
merged depth factor, SDF, is constant over the whole contour except near the
trailing edge, where 1t automatically decreases along the single sheet
(Fig. 1). The control points remain on the alrfoll contour except in the

region very close to the trailing edge; hexe, corresponding upper and lower



control points are combined and moved to the mean line, IHence, the model
adjacent to the tralling ecdge rescmbles a camber-line model, and alleviates
the scnsltivity of a surface vortiecity method to trulling edge shape. Because
of this modeling, thexe are more control points than unknown singularitics,
and so the cquations are solved in a least-squares sense, using a NASA-Ames
voutilne?" based on the Houscholder method,?25

For the dnitial model, the subvortices arc placed on straight segments
Jjoining the basic vortices (Filg. 3). They are positioned with equal inare-
ments in 6; for example, between the kth and (k + L)th basle vortices,

the subvortex positlon vectors aro:

xy =Ry -1 +Rns L=1,2, ..., NSV )

v

where: ng = (cos 0, ~ cos Bsi)/(cos 0 =~ cos 8 8

K et1?d 8y
and 68 = A8/NSV. The subvortex strength Ffactor (i.e., subvortex strength/

. =0, + (i - 0.5)8,

basle vortex strength) is
. gin Bi(l - ni)S 5in(66/2)
Bk

This distribution of subvortices approximates to a linear vorticity variation

Ser

i

on the styxaight segments joining the basic vortices.

2.5 Equilvalent Plecewise Constant Doublet Distribucilon

In three-dimenslons, quadrilateral vortices are convenlent for modeling
arbltrary geometry configurations.8:»7:9 The present study, therefore, is
based on the two-dimensional form of that model, viz., opposing vortex pairs
(Fig. 3) which are equivalent to a pilecewise uniform normal-doublet distribu—

tion. Such a model, forming a closed surface, requires one doublet panel



strength to be specified, otherwise the system is indeterminate., Accoxdingly,
the upper panel adjacent to the crossover (Flg., 3) is specified to have zero
strength, The boundpry conditlon equation assoclated with the control point
above the specified panel is still included in the syastem of equatdlons, alch
is solved in the least-squares scense (Subscction 2.4), The resultant vortex

strengths are

r, =D

1{ k - Dk‘l"l; k = l, 2, oy 0y N

where D, are the doublet panel strengths, 1.e., the strengths of the

k

opposing vortex pairs. (Note that D hag been assumed zero.)

N1
2.6 Initial Results

Tf: slngulardity model was used to caleulate surface pressures on the
campered Joukowskl alrfoll considerei in Subsection 2.2. Incidence was 10°,
and the total number of basle vortices was 46 after submerping to a depth of
0.14. The initial vortex positions (before submerging) were fdentical to
thoge 1in Subsection 2.2, The near-fileld radlus Ffactor (NRF) was 5.0,
following the work of Mnskew,l and the subvortex parameter FNS In Eq. (1)
was 2. The pressure distribution calculated at the same polnts as din Fig. 1
is quite good (see Fig. 4) except at the leading edge and near the crossover
between the upper and lower submerged sheets. Just upstream of the crossnver,
the rorresponding upper and lower vortices have almost identical sets of
influence coeff}cienta, and this produces ill-conditiloning of the equations.
In the solution, therefore, corresponding upper and lower vortices form
increasingly strong opposing pairs as the junctilon is approached, and so a

strong local flow is induced approximately in the direction of the mean line.
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Although thls increases the upper and lower suxface calculated pressures
(Fig. 4), the resultant strength between the corresponding vortices glves a
smooth chordwise load distribution and an acecurate lift and pltching momen.,
e.g., the calculated results Erom pressure Integration using the trapezoidal
rule are C; = 1.7064 and G = ~0.5369, compared with the exact values
1.6973 and -0.5391, respectively. The integrated drag coefficient (which
should be zero) is -0.0098, i.u., an errvor of ~0.57% of CL.

The computing time For this caleculation is four times that fox the basic
case wilith no subvortex teéhnique. A small part of this increase (16%) i1s
attributable to the larger number of vortices in the present case, viz.,

46 cf. 41. The smaller submerged depth here results in fewer vortilces being
removeq in the crossover region. The computing time could be reduced by
storing the subvortex peosition vectors and strength factors; these quantities

were recomputed each time In the present program.

2.7 Addition of Source Singularitiles

One way of explaining the pressure deviations near the subsurface
crossovesr is that corresponding upper and lower vortices are trying to
provide a thickness effect at the suxface (as well as the lifting effect) from
a small base. Source singularities, which are more suiltable for providing
thickness effects, were trerefore Eombined with the vortices to remove the
problem by providing a more sultable basic onset flow for the vortices.” The
source strengths are evaluated from a local linearized sclution based on the

relative slope between the alrfoil surface and cambexr line:
_ AkY§k * Op

a
k o

(3)

11



The source onset flow Vs dis a unit flow along the direction of the local
camber line to Facllitate the treatment of cambered airfoils. (A uniform
cnset f£low was found unsultable In such cases.) The model increases the
computation time by 8%, yet the sources receive the same "subvortex'" treatment

as the basic vortices, i.e., Eq. (2) becomes:

V= [r(qg-+tq9 + o(Wi - ug)]
- 27

" beiné the velocity contribution from a combined vortex/source. {(In three
dimenslons the source treatment would be a more invelved evtension of the
vortex equation.)

The sources, then, provide the vortices with a basic onset flow in which
the th;ckness effects are approximately represented and this is partilcularly
beneficial near the leading and tralling edge (Fig. 5). The pressure
distribution from this model shows marked improvement (compare Tigs. 4 and 5),
but there is still a tendency for the pressure distribution to oseilllate,
particularly near the leading edge. Integrating the pressure distribution
yields the following force and moment coefficients: GL = 1.7040 (0.4% error),

C, = -0.0069 (0.4% of €, and C, = -0.5377 (0.26% error).

2.8 Inecrease in the Density of the Subvortex System

To reduce the pressure o sillation near the leading edge, the number of
subvortices was doubled (FNS = 4 in Eq. (1)). Figure 6 shows the resulting
pressure distribution. Examination of the values shows the whole distribution
is improved to the point that even the minor undulations, which can just be
detected in the upper surface distribution in Fig. 5, are removed; but,'though

improved, the leading-edge overshoot in pressure 1s still there. Doubling

12



the Factor FNS fncreases computatlon time by 53%, while the inteprated force
and moment cocfficlents show only minor improvements in accuracy. Increasing
the numbexr of subvortices Lo TFNS = 8 did not significantly improve the

distribution in Fig. 6.

2,9 Qurved Subvortex '"Sheet"

In a further attempt to remove the small leading-edge problem, a higher-
order interpolation scheme (i.e., biquadratic) was applied for pasitioning

the subvortices., Equation (4) was therefore replaced with

E =8, (n)dR k80, anp)R

e gy Loy Lot (g LRy, O

where .
1V 40 M [ (L -npd) °
(L-n3% (M =-n) o, -0 - g
By(Ng2MyoN,) = 4 oy i 2 Yo
n
1 N2
=-AS ASy + AS

{This is a cublec curve formed by a linear combination of two overlapping
quadratic curves.)

The modified technique was applied to the same Joukowski alrfoll as
before, with FN§ = 2. The resulting pressure distribution, shown in Tig. 7,
indicates a small improvement in the leading-edge reéion (compare with Fig. 5
and examine the distances between pressure valueg near the leading edge).

The computation time inecreased by 17% over the linear-interpolation case.

This increase is larger than needed in practice because the biquadratic

13



Interpolation was applied throughout the ailrfoil, whereas it is clearly not
required over a substantial part of the contour (compare Figs. 5 and 7).

In a practical method, the higher~order interpolation would be applied only in
reglons of high curvature and only when the maximum number of subvortices is
belng used in the segment.

The higher-order geometry routine slightly improved the accuracy for the
integrated 1ift and pitching moment (the new errors beilng 0,347 and 0.247%,
respectively), but the drag error was more than halved from -0.0069 to ~0.0028
(L.e., 0.4% of CL to 0.17% of CL) as a result of the improved pressure
distribution near the leadinpg edge. Further improvement at the leading edge
might be achieved using a higher-order strength distribution for the subvor-
tices in the high curvature region. This would allow a closer representation
of the extreme variation in vorticity that occurs at the leading edge in the
present case (see also Subsection 3.1). Significantly, the pressure does not
oscillate when the large peak Is removed from the pressure distribution,

e.g., Fig. 8 shows the pressure distribution for the same airfoil at zero

incidence (CD error in this case was 0.04% of C., l.e., 0.0002).

2,10 Pressure Integration

So far, the integrated values for CL’ CM and CD have been based on
the trapezoidal rule applied to 120 caleculated pressure values. A number of
cases were computed for fhe configuration in Subsection 2.9 (a = 10°) varying
the number of calculation points but keeping the basic vortex/source model the
same. The resulting integrated CL’ CM and GD errors are shown in Fig. 9.
Minor variations are indicated for numbers down to 50 and even 25 in the case

of 11ift and pitching moment. With only 25 calculation points on the airfoill,

14



however, the integrated drag coefficient has started to diverge; apart [rom
this, the drag exror is held below 0.5% of CL and the 1ift and moment coef-
ficient errors are below 0.5%. Small undulations occur because of the chang-
ing relationahip between the calculation points and the small pressure
osciliatilons seen in Fig. 7. Pressure integration for forces and monents was
originally chosen as an overall guide to accuracy of the pressure dietribution
(particularly in the case of drag). The alternative, based on vortex
strengths, appears less sensitive to the present modifications; for the case

in Fig. 7, the Lift based on circulation is only 0.1% in error.

2,11 Constraint Functdion

The vortex pair/doublet strength distribution has a very smooth form
(Fig. iO) because it represents integrated vorticity over the surface. The
smoothness (when plotted against doublet subscript k) is helped by the use
of the cosine spacing (Subsection 2.4), which concentrates the singularities
in the region of large vortieity gradient, A further contribution to the
smoothness of the distribution is provided by the source singularities
(Fig. 10). The resulting distributlon can be represented by fairly simple
interpolation functions with a view to reducing the number of unknowns. This
principle has been widely used in the past, particularly in linearized
theories using global functions covering, for example, a full wing span or
chord. In the present work, a biquadratic constraint function (similar to
Eq. (6) but with n based on the doublet subscript k instead of surface
length) was briefly investigated to reduce the number of unknowns when the
present method is extended to the three-dimensional form. The functilon was

applied piecewise in a way similar to that in the constraint function
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technique being developed in the NASA Ames POTFAN program, 26 The plecewise
application (as opposed to a global one) should be more flexible in treating
complicated configurations in three~dimensional flow. The full matrix of
influence coeffilecients is stdlll Formed, but elements of the matrix are com-
bined at selected pivotal posiltions in acecordance with the constraint fune-
tions, After the pivotal values are solved, the complete set of doublet
strengths 1is generated again using the constraint functions.

Figure 11 shows the calculated pressure distribution for the Joukowskl
airfoll represented by 46 vortilces with the number of unknowrs halved. (The
corresponding full solution is in Fig, 7.) The CL value decreased to
1.6783 (-1% error), and the computation time increased 1l4%; this increase
accounts for the matrix manipulation time since the saving in the sclution
time at the present low level of unknowns is insignificant in comparison with
the overall run time.

Further reductions in the number of unknowns caused substantial losses
in the overall eirculation and hence large errors in the pressure levels.
The problem appears to be that the pilecewise application of the constraint
function decouplas a large part of the doublet distribution from the Kutta
condition control point, and although the general shape of the distribution is
maintained (as in Fig. 10) the starting level at the trailing edge (which
determines the circulation) falls as the number of unknowns 1s decreased.
Development of this technique is continuing, and promlses to remove the

initial problem. The technique should lead to significant beneflts for the

three~dimensdional method.
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3.0 Parametric Study

A parametric study was performed to examine the following factors in the
method: (a) the number of basile singularxities, NBS; (b} the submerged depth
factoxr, SDF; and (ec) the near-field radius factor, NRF. Throughout the
parametric study, the status of the method was as follows: ({a) sources were
present and thelr strengths solved in accowrdance with Eq. (5); (b) the
biquadratie interpolation scheme was used for positioning the subvortices
(Eq. (6)); (c) the constraint function routine was not used, i.e., the full
solution was obtained directly; enu (d) the factor on the number of subvor-
tices, FNS in Eq. (1), was 2. The ealculations were performed for the same
cambered Joukowski airfoll as 4n Section 2. Incidence was again 10° and the
pressures were calculated at the same 120 points. The base parameters, when
they were not being varied, had the following values: NBS = 46, SDF = 0.1
and NRF = 5.0. Exceptions occurred in two situations: £ilxst, when varying
WBS, the submerged depth was held constant and so the factor SDF varied;
second, when varying SDF, the number of basic singularities (NBS) varied
slightly because of the changing length of the single sheet near the trailing

edge.

3.1 Effect of Number of Basic Singularities

The number of basic singularities (i.e., combined vortex/sources), NBS,
was varied from 19 to 92 using a constant submerged depth. This depth
corresponded to an SDF value of 0.1 in the base case with NBS = 46. Figure 12
shows the pressure distribution for NBS = 19; using so few vortices would

clearly be an advantage in three-dimensional applications. The calculated
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pressure values are surprisingly good over most of the alrxfell, but an oscll-
lation is present near the leading edge. This pressure oscillation decreases
ng NBS increases, and virtually disappears when NBS = 92, This result indi-
cates that a ecloser representation of the conditions near the leading edge
might improve the solution when using a small value for NBS; since the model
already represents geometric curvature, and since we have already tried
increasing the effective number of singularities (Subsection 2.8}, then an
improvement might be obtained by using a higher-order distribution for the
subvortex strengths near the leading edge (see also Subsection 2.9).

Figure 13 shows the errors in the caleulated values for the 1lift, drag
and pltching moment coefficlents for different values of NBS. These quanti-
ties undulate slightly because of the numerical integration scheme, coupled
with the changinp relationships between the (fixed) calculution points and the
(varying) vortex/source locations. Nevertheless, the error levels appear to
be bounded: C  and Gb

L i
below 0.57% of CT’ even with only 19 basic singularities.

are well within 1% error, and the GD error is

The computation time does not vary much for small values of NBS,
e.g., the time with NBS = 19 is only 7% lower than the time with NBS = 46.
The reason is that with a constant submerged depth, the required number of
subvortices ingreases as the number of basic vortices decreases. The times
for forming the matrix of influence coefficients and for solving the equations
do vary with NBS, however, and although these form only a small part of the
total time (d.e., less than 25%) for low NBS values, when NBS = 91 these
contributions cause an increase of 64% dn total time over that for the base

case {NBS = 46).
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3.2 EEfeet of Submerged Depth

The submerged depth factor, SDF, was varied from 0.025 to 0.4 on the
basic case. Two of the resulting pressure distributions for SDF = N.025 and
0.4 are shown in Figs., l4(a) and 14(b), respectively. Tigure 7 shows the
corresponding distribution for SDF = 0.1, With the small submerged depth
(Fig. 14(a)), the leading-edge pressure oscillatlon is made worse — possibly
because the "linear vorticity" distxibution is closer to the surface — but
the pressures in the tralling-edge region are even better than in the basic
case with SDF = 0.1 (compare with Fig. 7).

The larger submerged depth (Fig. 1l4(b)) glves a smoother pressure
distribution near the leading-edge — but with a too-high value; at the trall-
ing edge, however, the pressure distribution has eollapsed, A value for SDF
between 0.05 and 0.1 (foxr NBS = 46) gives the best pressure distribution.
Computing time should be taken into consilderation, however. As the submexrged
depth decreases, the number of subvortices must increase, and so computing
time increases rapidly, especially for SDF values below 0.1, e.g., the time
for SDF = 0.05 is 357 higher than that for SDF = 0.1,

Figure 15 shows how the integrated force and moment coefficilents vary
with submerged depth. As SDF idncreases, CD and CM errors become rapidly
worse — probably because of the deterlorating pressure distribution near the

trailing edge. SDF does not appear to affect CL appreclably.

3.3 Effact of Near-Field Radilus

The near-field radius factor, NRF, when multiplied by the 4 wvalue of
a basic vortex, defines a vircle centered on that vortex. Whenever a veloclty
caleulation point comes inside the cirele, then that basic vortex is modified
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by the subvortex technlque. The near-fileld radius was examined for a simple
case,! and on the basis of that, an NRF value of 5 was used for initisl work
here. To examine Ilts effect in the adrfoll application, NRF was varied from
L te 7. TFigure 16 shows the pressure distribution with NRF = 1 —~ which is
elearly too small. The calculated pressure distribution at the arbitrary
points Llmproves as NRF inecreases, but there ds little visual change in the
distributions for NRY values above about 3, Computing time decreases rapildly
as NRF is veduced; a value of 2 instead of 5 for NRF gives a time saving of
an%.

Figure 17 shows the effect of NRF on the force and moment errors f£rom the
pressure integration. They show excellent converpence charagterlstics as NRF
appears to be converging towarde an error of the

L

order of 0.5%. The error in CL based on cireculatinon, however, converpges

inereases, although C

towards zero.

4,0 Concluslons

The combination of a near-fileld subvortex technlque with a concept that
places the sinpularities dinside the airfoill has resulted in a method by which
accurate pressures (and velocities) can be calculated directly (i.e., without
interpolation) at any arbitrary point on the airfoil surface. The method is
essentially a numerical dntegration procedure, but, by approaching it via the
vortex lattiece model, a useful set of rules and automatic procedures has been
devaloped which makes the method accurate as well as efficient when moving
from near~ to far-field regions, The calculations were enhanced by combining

sources with the vortices.
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The resulte obtalned so far dndicate that the number of » zic¢ singulari-
ties used Lo represent a section should be of the order of 40 «. 50, However,
the results also suggest that the use of a higher-order strength variation for
the subvortices in reglons of high pressure gradient might allow the number to
be decreased — possibly as low as 20.

Beardng Iin mind accuracy and computing effort, the optimum values for
the submerged depth and for the near-field radius would appear to be of the
order of 0.1A and 3A, respectdvely. Computing time penalties quoted herein
for the various parametric changes and developments are, in general, on the
pessimistic side. There ls considerable potential for improving the test
method to reduce computation effort, particularly in connection Qith the sub-
vortex system,

Tﬁe method can be extended to three dimensions for application to vortex

lattice based methods, and should then allow close-approach situations

associated with multiple components and force~free wake calculations,
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